Technical Aptitude

ELECTRIC CIRCUIT THEORY

Electrical Components and Circuits

The purpose of this chapter is to discuss basic direct current (dc) circuit components in preparation for the two following chapters that deal with integrated circuits and microcomputers in instruments for chemical analysis.

DIRECT CURRENT CIRCUITS AND MEASUREMENTS

Some basic direct current circuits and how they are used in making current, voltage, and resistance measurements will be considered.

The general definition of a circuit is a closed path that may be followed by an electric current.

A galvanometer is a device with a rotating indicator that will rotate from its equilibrium position when a current passes through it. A galvanometer has negligible resistance.

Ampermeter
An ampermeter (ammeter) is a galvanometer with a calibrated current scale for its indicator and a bypass resistor (called a shunt) for a fixed fraction of the current, shown in Figure 1. Many ammeters have several selectable shunts which provide their corresponding current meter ranges. Typically, ammeters can be found with calibrated ranges of 1 micro-A for full scale deflection up to 1000 A for full scale deflection, and in multiples of 10 between these extremes.

Voltmeter

A voltmeter, shown in Figure 2, is just a calibrated galvanometer with a series resistor so that the total resistance of the path is increased. The galvanometer range is calibrated for the current Ig passing through it. This scale is adjusted to display the potential difference between points A and B, (voltage) by substituting $V g$ values for $I g$ on the scale where $V g=\operatorname{Ig} \operatorname{Rg}$ and Rg is the total resistance of the voltmeter. Voltmeters may have more than one calibrated scale which can be selected by changing the resistance Rg.

Current in a circuit is the flow of the positive charge from a high potential (+) to a low potential (-). Meters are labeled to indicate the proper direction of current flow through them. A reverse flow of DC current may destroy a meter.

Electrical charge will not move through a conducting path unless there is a potential difference between the ends of the conductors. All materials resist the flow of current through them, requiring work to be done to move the charge through the material. The source of energy in a circuit which provides the energy to move the charge through the circuit can be a battery, photocell, or some other power supply.

An electrical circuit is a circuitous path of wire and devices. A schematic drawing of a real circuit utilizes the symbols shown in Figure 3.

Circuit Symbols

An example, Figure 4, shows a circuit with a DC. power supply in a series with a resistor, a parallel branch with a resistor and voltmeter, and an ammeter.

Example of an Electric Circuit.

BASIC ELECTRIC CIRCUIT

The flashlight is an example of a basic electric circuit. It contains a source of electrical energy (the dry cells in the flashlight), a load (the bulb) that changes the electrical energy into a more useful form of energy (light), and a switch to control the energy delivered to the load.

A load is any device through which an electrical current flows and which changes this electrical energy into a more useful form. The following are common examples of loads: A light bulb (changes electrical energy to light energy).
An electric motor (changes electrical energy into mechanical energy).
A speaker in a radio (changes electrical energy into sound).
A source is the device that furnishes the electrical energy used by the load. It may be a simple dry cell (as in a flashlight), a storage battery (as in an automobile), or a power supply (such as a battery charger). A switch permits control of the electrical device by interrupting the current delivered to the load.

(A) DEENERGIZED

(B) ENERGIZED

Schematic of a Basic Circuit, the Flashlight
Laws of Electricity
Ohm" s law describes the relationship among potential, resistance and current in a resistive series circuit. In a series circuit, all circuit elements are connected in sequence along a unique path, head to tail, as are the battery and three resistors shown in Figure 2-1. Ohm" s Law may be written as:
$\mathrm{V}=\mathrm{IR}$

Where V is the potential difference in volts between two points in a circuit, R is the resistance between the two points in ohms, and I is the resulting current in amperes.
diagrams for determining resistance and voltage in a basic circuit, respectively.

FIGURE 3-2. Determining Resistance in a Basic Circuit.

FIGURE 3-3. Determining Voltage in a Basic Circuit.

Using Ohms's Law, the resistance of a circuit can be determined knowing only the voltage and the current in the circuit. In any equation, if all the variables (parameters) are known except one, that unknown can be found. For example, using Ohm's Law, if current (I) and voltage (E) are known, you can determine resistance (R), the only parameter not known:

Basic formula: $I=\frac{E}{R}$

The formula may also be expressed as-
$E=1 \times R$ or $R=\frac{E}{I}$

Increase in Resistance
 (Constant Voltage)

Q. A steady increase in resistance, in a circuit with constant voltage, produces a progressively (not a straight-line if graphed) weaker current.

In simpler terms, Ohm"s Law means:
R. A steady increase in voltage, in a circuit with constant resistance, produces a constant linear rise in current.

Increase in Voltage (Constant Resistance)

Voltage

TECHNICAL DEFINITION ALERT!

Ohm's Law is a formulation of the relationship of voltage, current, and resistance, expressed as:

$$
\begin{gathered}
V=I \times R \\
I=\frac{V}{R}^{\text {or }} \quad \text { R }=\frac{V}{I}
\end{gathered}
$$

Where:
V
is
the
Voltage
measured
in
volts

R is the resistance measured in Ohms
Therefore:
Volts $=$ Amps times Resistance

Ohms Law is used to calculate a missing value in a circuit.

In this simple circuit there is a current of $12 \mathrm{amps}(12 \mathrm{~A})$ and a resistive load of 1 Ohm (1W).
Using the first formula from above we determine the Voltage:
$\mathrm{V}=12 \times 1: \mathrm{V}=\mathbf{1 2}$ Volts (12V)
If we knew the battery was suppling 12 volt of pressure (voltage), and there was a resistive load of 1 Ohm placed in series, the current would be:

I = $\mathbf{1 2}$ / $1: \mathrm{I}=12 \mathrm{Amps}$ (12A)
If we knew the battery was suppling 12 V and the current being generated was 12 A , then the Resistance would be:
$R=12 / \mathbf{1 2}: R=1 \mathrm{~W}$

An easy way to remember the formulas is by using this diagram.

To determine a missing value, cover it with your finger. The horizontal line in the middle means to divide the two remaining values. The " X " in the bottom section of the circle means to multiply the remaining values.
S. If you are calculating voltage, cover it and you have I X R left ($\mathrm{V}=\mathrm{I}$ times R).
T. If you are calculating amperage, cover it, and you have V divided by R left ($I=V / R$).
U. If you are calculating resistance, cover it, and you have V divide by I left ($\mathrm{R}=\mathrm{V} / \mathrm{I}$).

Note: The letter \mathbf{E} is sometimes used instead of \mathbf{V} for voltage.

Kirchhoff" s Law

Kirchhoff" s current law states that the algebraic sum of currents around any point in a circuit is zero. Kirchhoff" s voltage law states that the algebraic sum of the voltages around a closed electrical loop is zero.

Kirchhoff's Voltage Law
Kirchhoff's Voltage Law (or Kirchhoff's Loop Rule) is a result of the electrostatic field being conservative. It states that the total voltage around a closed loop must be zero. If this were not the case, then when we travel around a closed loop, the voltages would be indefinite. So

Figure 1 Around a closed loop, the total voltage should be zero

In Figure 1 the total voltage around loop 1 should sum to zero, as does the total voltage in loop2. Furthermore, the loop which consists of the outer part of the circuit (the path ABCD) should also sum to zero.

We can adopt the convention that potential gains (i.e. going from lower to higher potential, such as with an emf source) is taken to be positive. Potential losses (such as across a resistor) will then be negative. However, as long as you are consistent in doing your problems, you should be able to choose whichever convention you like. It is a good idea to adopt the convention used in your class.

Power Law

The power law states that the power in watts dissipated in a resistive element is given by the product of the current in amperes and the potential difference across the resistance in volts:
$\mathrm{P}=\mathrm{IV}$

And substituting Ohm" s law gives:
$P=I^{2} R=V^{2} / R$

Basic Direct Current Circuits

The Schematic Diagram

The schematic diagram consists of idealized circuit elements each of which represents some property of the actual circuit. The Figure shows some common circuit elements encountered in DC circuits. A two-terminal network is a circuit that has only two points of interest, say A and B.

Figure: Common circuit elements encountered in DC circuits: a) ideal voltage source, b) ideal current source and c) resistor.

Two types of basic dc circuits will be described; series resistive circuits and parallel resistive circuits.

and three resistors in series.

Figure 2-1 (Principles of Instrumental Analysis)

The current is the same at all points in a series circuit, that is:
$\mathrm{I}=\mathrm{I}_{1}=\mathrm{I}_{2}=\mathrm{I}_{3}=\mathrm{I}_{4}$

Application of Kirchhoff" s voltage law to the circuit in Figure 2-1 yields:
$\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}$

The total resistance, R_{S}, of a series circuit is equal to the sum of the resistances of the individual components.
$\mathrm{R}_{\mathrm{s}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$

Parallel Circuits

Figure 2-2 shows a parallel dc circuit.

Figure 2-2 (Principles of Instrumental Analysis)

Applying Kirchhoff" s current law, we obtain:
$\mathrm{I}_{\mathrm{t}}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}$

Applying Kirchhoff" s voltage law to this circuit gives three independent equations.
$\mathrm{V} .=\mathrm{I}_{1} \mathrm{R}_{1}$
$\mathrm{V}=\mathrm{I}_{2} \mathrm{R}_{2}$
$\mathrm{V}=\mathrm{I}_{3} \mathrm{R}_{3}$

Substitution and division by V gives:
$1 / R_{p}=1 / R_{1}+1 / R_{2}+1 / R_{3}$

Since the conductance, G, of a resistor, R, is given by $G=1 / R$:

$$
\mathrm{G}_{\mathrm{p}}=\mathrm{G}_{1}+\mathrm{G}_{2}+\mathrm{G}_{3}
$$

Conductances are additive in a parallel circuit rather than the resistance.

In conclusion, the most important things to remember about the differences between resistors in series and parallel are as follows:

Resistors in series have the same current and
Resistors in parallel have the same voltage.

SEMICONDUCTOR DIODES

Learning objectives are stated at the beginning of each chapter. These learning objectives serve as a preview of the information you are expected to learn in the chapter. The comprehensive check questions are based on the objectives. The learning objectives are listed below.

Upon completion of this chapter, you should be able to do the following:
Ω. State, in terms of energy bands, the differences between a conductor, an insulator, and a semiconductor.
E. Explain the electron and the hole flow theory in semiconductors and how the semiconductor is affected by doping.
Ψ. Define the term "diode" and give a brief description of its construction and operation.
Z. Explain how the diode can be used as a half-wave rectifier and as a switch.

AA. Identify the diode by its symbology, alphanumerical designation, and color code.
BB. List the precautions that must be taken when working with diodes and describe the different ways to test them.

A diode is a nonlinear device that has greater conductance in one direction than in another. Useful diodes are manufactured by forming adjacent n-type and p-type regions within a single germanium or silicon crystal: the interface between these regions is termed a pn junction.

Figure 2-3a is a cross section of one type of pn junction, which is formed by diffusing an excess of a p-type impurity, such as indium, into a minute silicon chip that has been doped with an n-type impurity, such as antimony. A junction of this kind permits movement of holes from the p region into the n region and movement of electrons in the in the reverse direction. As holes and electrons diffuse in the opposite direction, a region is created that is depleted of mobile charge carriers and thus has very high resistance. This region is referred to as the depletion region. Because there is a separation of charge across the depletion region, a potential difference develops across the region that causes a migration of holes and electrons in the opposite direction. The current that results from the diffusion of holes and electrons is balanced by the current produced by migration of the carriers in the electric field, thus there is no net current. The magnitude of potential difference across the depleted region depends upon the composition of the materials used in the pn junction. For silicon diodes, the potential difference is about 0.6 V , and for germanium, it is about 0.3 V . When a positive potential is applied across a pn junction, there is little resistance to current in the direction of the p-type to
the n-type material. On the other hand, the pn junction offers a high resistance to the flow of holes in the opposite direction and is called a current rectifier.

Figure 2-3b illustrates the symbol for a diode. The arrow points in the direction of low resistance to positive current. The triangular portion of the diode symbol may be imagined to point in the direction of current in a conducting diode.

Figure 2-3c shows the mechanism of conduction of charge when the p region is made positive with respect to the n region by application of a potential; this process is called forward biasing. The holes in the p region and the excess electrons in the n region move under the influence of the electric field toward the junction, where they combine and annihilate each other. The negative terminal of the battery injects new electrons into the n region, which can then continue the conduction process; the positive terminal extracts electrons from the p region, creating new holes that are free to migrate towards the pn junction.

Figure 2-3d shows when the diode is reverse-biased and the majority carriers in each region drift away from the junction to form the depletion layer, which contains few charges. Only the small concentration of minority carriers present in each region drifts toward the junction and creates a current.

Ampermeter

An ampermeter (ammeter) is a galvanometer with a calibrated current scale for its indicator and a bypass resistor (called a shunt) for a fixed fraction of the current, shown in Figure 1. Many ammeters have several selectable shunts which provide their corresponding current meter ranges. Typically, ammeters can be found with calibrated ranges of 1 micro-A for full scale deflection up to 1000 A for full scale deflection, and in multiples of 10 between these extremes.

Voltmeter

A voltmeter, shown in Figure 2, is just a calibrated galvanometer with a series resistor so that the total resistance of the path is increased. The galvanometer range is calibrated for the current Ig passing through it. This scale is adjusted to display the potential difference between points A and B , (voltage) by substituting Vg values for Ig on the scale where $\mathrm{Vg}=\mathrm{Ig} \mathrm{Rg}$ and Rg is the total resistance of the voltmeter. Voltmeters may have more than one calibrated scale which can be selected by changing the resistance Rg .

Current in a circuit is the flow of the positive charge from a high potential (+) to a low potential (-). Meters are labeled to indicate the proper direction of current flow through them. A reverse flow of DC current may destroy a meter.

Electrical charge will not move through a conducting path unless there is a potential difference between the ends of the conductors. All materials resist the flow of current through them, requiring work to be done to move the charge through the material. The source of energy in a circuit which provides the energy to move the charge through the circuit can be a battery, photocell, or some other power supply.

ELECTRIC CIRCUIT THEORY

Q. 1 Consider a delta connection of resistors and its equivalent star connection as shown below. If all elements of the delta connection are scaled by a factor $k, k>0$, the elements of the corresponding star equivalent will be scaled by a factor of

(A) k^{2}
(B) k
(C) $1 / k$
(D) k

The flux density at a point in space is given by $B=4 x a \mathrm{v}_{x}+2 k y a \mathrm{v}_{y}+8 a \mathrm{v}_{z} \mathrm{~Wb} / \mathrm{m}^{2}$. The value of constant k must be equal to
(A) -2
(B) -0.5
(C) +0.5
(D) +2

A single-phase load is supplied by a single-phase voltage source. If the current flowing from the load to the source is $10+-150 \mathrm{cA}$ and if the voltage at the load terminal is $100+60 \mathrm{cV}$, then the
(A) load absorbs real power and delivers reactive power
(B) load absorbs real power and absorbs reactive power
(C) load delivers real power and delivers reactive power
(D) load delivers real power and absorbs reactive power

A source $v s^{\wedge} t \mathrm{~h}=V \cos 100 p t$ has an internal impedance of $\wedge 4+j 3 \mathrm{hW}$. If a purely resistive load connected to this source has to extract the maximum power out of the source, its value in W should be
(A) 3
(B) 4
(C) 5
(D) 7
Q. 5

The transfer function $\quad \underline{V_{2} \wedge_{s} h}$ of the circuit shown below is

(A) $\frac{0.5 s+1}{s+1}$
(B) $\frac{3 s+6}{s+2}$
(C) $\frac{s+2}{s+1}$
(D) $\frac{s+1}{s+2}$
Q. 6

A dielectric slab with $500 \mathrm{~mm} \# 500 \mathrm{~mm}$ cross-section is 0.4 m long. The slab is subjected to a uniform electric field of $E \quad \mathrm{~V} \underset{=6 a x}{\mathrm{~V}} \underset{+8 a y \mathrm{kV} / \mathrm{mm} \text {. The relative }}{\mathrm{V}}$ permittivity of the dielectric material is equal to 2 . The value of constant e_{0} is $8.85 \# 10^{-12} \mathrm{~F} / \mathrm{m}$. The energy stored in the dielectric in Joules is
(A) $8.85 \# 10^{-11}$
(B) $8.85 \# 10^{-5}$
(C) 88.5
(D) 885
Q. 7 Three capacitors C_{1}, C_{2} and C_{3} whose values are $10 \mathrm{mF}, 5 \mathrm{mF}$, and 2 mF respectively, have breakdown voltages of $10 \mathrm{~V}, 5 \mathrm{~V}$ and 2 V respectively. For the interconnection shown below, the maximum safe voltage in Volts that can be applied across the combination, and the corresponding total charge in mC stored in the effective capacitance across the terminals are respectively,

(A) 2.8 and 36
(B) 7 and 119
(C) 2.8 and 32
(D) 7 and 80

In the circuit shown below, if the source voltage $V_{S}=100+53.13 \mathrm{cV}$ Thevenin's equivalent voltage in Volts as seen by the load resistance R_{L}

then the is
(A) $100+90 \mathrm{c}$
(B) $800+0 \mathrm{c}$
(C) $800+90 \mathrm{c}$
(D) $100+60 \mathrm{c}$

The impedance looking into nodes 1 and 2 in the given circuit is

(A) 50 W
(B) 100 W
(C) 5 kW
(D) 10.1 kW

In the circuit shown below, the current through the inductor is

(A) $\frac{2}{1+j}$ A
(B) $\frac{-1}{1+j} \mathrm{~A}$
(C) $\frac{1}{1+j} \mathrm{~A}$
(D) 0 A
C. 1
Q. 12
Q. 13

A system with transfer function $\quad G(s)=\frac{\left(s^{2}+9\right)(s+2)}{(s+1)(s+3)(s+4)}$
is excited by $\sin (W t)$. The steady-state output of the system is zero at
(A) $w=1 \mathrm{rad} / \mathrm{s}$
(B) $w=2 \mathrm{rad} / \mathrm{s}$
(C) $w=3 \mathrm{rad} / \mathrm{s}$
(D) $w=4 \mathrm{rad} / \mathrm{s}$

The average power delivered to an impedance $(4-j 3) \mathrm{W}$ by a current $5 \cos (100 p t+100) \mathrm{A}$ is
(A) 44.2 W
(B) 50 W
(C) 62.5 W
(D) 125 W

In the following figure, C_{1} and C_{2} are ideal capacitors. C_{1} has been charged to 12 V before the ideal switch S is closed at $t=0$. The current $i(t)$ for all t is

(A) zero
(B) a step function
(C) an exponentially decaying function
(D) an impulse function
Q. 14

If $V_{A}-V_{B}=6 \mathrm{~V}$ then $V_{C}-V_{D}$ is

(A) -5 V
(B) 2 V
(C) 3 V
(D) 6 V

Assuming both the voltage sources are in phase, the value of R for which maximum power is transferred from circuit A to circuit B is

(A) 0.8 W
(B) 1.4 W
(C) 2 W
(D) 2.8 W

Common Data for Questions 16 and 17 :

With 10 V dc connected at port A in the linear nonreciprocal two-port network shown below, the following were observed:
(i) 1 W connected at port B draws a current of 3 A
(ii) 2.5 W connected at port B draws a current of 2 A

With 10 V dc connected at port A, the current drawn by 7 W connected at port B is
(A) $3 / 7 \mathrm{~A}$
(B) $5 / 7 \mathrm{~A}$
(C) 1 A
(D) $9 / 7 \mathrm{~A}$

For the same network, with 6 V dc connected at port $A, 1 \mathrm{~W}$ connected at port B draws $7 / 3 \mathrm{~A}$. If 8 V dc is connected to port A, the open circuit voltage at port B is
(A) 6 V
(B) 7 V
(C) 8 V
(D) 9 V

Statement for Linked Answer Questions 18 and 19 :

In the circuit shown, the three voltmeter readings are $V_{1}=220 \mathrm{~V}, V_{2}=122 \mathrm{~V}, V_{3}=$ 136 V .

Q. 18

The power factor of the load is
(A) 0.45
(B) 0.50
(C) 0.55
(D) 0.60

If $R_{L}=5 \mathrm{~W}$, the approximate power consumption in the load is
(A) 700 W
(B) 750 W
(C) 800 W
(D) 850 W
Q. 20 The r.m.s value of the current $i(t)$ in the circuit shown below is
(A) $1 \frac{\mathrm{~A}}{2}$
(B) $\frac{1}{\sqrt{2}} \mathrm{~A}$
(C) 1 A
(D) $\sqrt{2} \mathrm{~A}$

Q. 21

The voltage applied to a circuit is $100, ~ 2 \cos (100 \mathrm{p} t)$ volts and the circuit draws a current of $10, ~ 2 \sin (100 \mathrm{p} t+\mathrm{p} / 4)$ amperes. Taking the voltage as the reference phasor, the phasor representation of the current in amperes is
(A) $10,2 /-\mathrm{p} / 4$
(B) $10-\mathrm{p} / 4$
(C) $10+\mathrm{p} / 4$
(D) $10,2 \nleftarrow \mathrm{p} / 4$

In the circuit given below, the value of R required for the transfer of maximum power to the load having a resistance of 3 W is

(A) zero
(B) 3 W
(C) 6 W
(D) infinity

Common Data For Q. 25 and 26

The input voltage given to a converter is $v_{i}=1002 \sin (100 \mathrm{p} t) \mathrm{V}$ The current drawn by the converter is
$i_{i}=10 \sqrt{2} \sin (100 \mathrm{p} t-\mathrm{p} / 3)+5 \quad 2 \sin (300 \mathrm{p} t+\mathrm{p} / 4)+22 \sin (500 \mathrm{p} t-\mathrm{p} / 6) \mathrm{A}$
Q. 25

The input power factor of the converter is
(A) 0.31
(B) 0.44
(C) 0.5
(D) 0.71
Q. 26 The active power drawn by the converter is
(A) 181 W
(B) 500 W
(C) 707 W
(D) 887 W

Common Data For Q. 27 and 28

An RLC circuit with relevant data is given below.

A lossy capacitor C_{x}, rated for operation at $5 \mathrm{kV}, 50 \mathrm{~Hz}$ is represented by an equivalent circuit with an ideal capacitor C_{p} in parallel with a resistor R_{p}. The value C_{p} is found to be $0.102 \mu \mathrm{~F}$ and value of $R_{p}=1.25 \mathrm{MW}$. Then the power loss and tan d of the lossy capacitor operating at the rated voltage, respectively, are
(A) 10 W and 0.0002
(B) 10 W and 0.0025
(C) 20 W and 0.025
(D) 20 W and 0.04

A capacitor is made with a polymeric dielectric having an e_{r} of 2.26 and a dielectric breakdown strength of $50 \mathrm{kV} / \mathrm{cm}$. The permittivity of free space is 8.85 pF / m. If the rectangular plates of the capacitor have a width of 20 cm and a length of 40 cm , then the maximum electric charge in the capacitor is
(A) $2 \mu \mathrm{C}$
(B) $4 \mu \mathrm{C}$
(C) $8 \mu \mathrm{C}$
(D) $10 \mu \mathrm{C}$

The power dissipated in the resistor R is
(A) 0.5 W
(B) 1 W
(C) 2 W
(D) 2 W

The current $\overline{I_{c}}$ in the figure above is
(A) $-j 2 \mathrm{~A}$
(B) $-j \frac{1}{12} \mathrm{~A}$
(C) $+j \frac{1}{-2} \mathrm{~A}$
(D) $+j 2 \mathrm{~A}$

The switch in the circuit has been closed for a long time. It is opened at $t=0$. At $t=0^{+}$, the current through the 1 mF capacitor is

(A) 0 A
(B) 1 A
(C) 1.25 A
(D) 5 A

As shown in the figure, a 1 W resistance is connected across a source that has a load line $v+i=100$. The current through the resistance is

(A) 25 A
(B) 50 A
(C) 100 A
(C) 200 A
Q. 31 If the 12 W resistor draws a current of 1 A as shown in the figure, the value of resistance R is

(A) 4 W
(B) 6 W
(C) 8 W
(D) 18 W

The two-port network P shown in the figure has ports 1 and 2, denoted by terminals (a, b) and $\quad(c, d)$ respectively. It has an impedance matrix Z with parameters denoted by $Z_{i j}$. A 1 W resistor is connected in series with the network at port 1 as shown in the figure. The impedance matrix of the modified two-port network (shown as a dashed box) is

(A) $Z_{11}+1 Z_{12}+1$
$Z_{11}+1 Z_{12}$
(B) $Z_{Z_{11}+1} Z_{Z_{21}} Z_{22}+{ }^{0}{ }^{0}$ $Z_{11}+1 Z_{12}$
(C) e $Z_{21} \quad Z_{22}$
(D) $\mathrm{e} Z 21+1 Z_{22}$
(A) 0 mA
(B) 1 mA
(C) 2 mA
(D) 6 mA

The current through the 2 kW resistance in the circuit shown is

How many $200 \mathrm{~W} / 220 \mathrm{~V}$ incandescent lamps connected in series would consume the same total power as a single $100 \mathrm{~W} / 220 \mathrm{~V}$ incandescent lamp?
(A) not possible
(B) 4
(C) 3
(D) 2

In the figure shown, all elements used are ideal. For time $t<0, S_{1}$ remained closed and S_{2} open. At $t=0, S_{1}$ is opened and S_{2} is closed. If the voltage $V_{c 2}$ across the capacitor C_{2} at $t=0$ is zero, the voltage across the capacitor combination at $t=0^{+}$will be

(A) 1 V
(B) 2 V
(C) 1.5 V
(D) 3 V

The equivalent capacitance of the input loop of the circuit shown is

(A) 2 mF
(B) 100 mF
(C) 200 mF
(D) 4 mF

For the circuit shown, find out the current flowing through the 2 W resistance. Also identify the changes to be made to double the current through the 2 W resistance.

(A) $\left(5 \mathrm{~A} ; \operatorname{Put} V_{S}=30 \mathrm{~V}\right)$
(B) $\left(2 \mathrm{~A} ; \operatorname{Put} V_{S}=8 \mathrm{~V}\right)$
(C) $\left(5 \mathrm{~A} ;\right.$ Put $\left.I_{S}=10 \mathrm{~A}\right)$
(D) $\left(7 \mathrm{~A} ;\right.$ Put $\left.I_{S}=12 \mathrm{~A}\right)$

Statement for Linked Answer Question 38 and 39 :

(A) 0.5 kW
(B) 0.2 kW
(C) 1 kW
(D) 0.11 kW

For the circuit given above, the Thevenin's voltage across the terminals A and B is
(A) 1.25 V
(B) 0.25 V
(C) 1 V
(D) 0.5 V

The number of chords in the graph of the given circuit will be

(A) 3
(B) 4
(C) 5
(D) 6
Q. 41

The Thevenin's equivalent of a circuit operation at $w=5 \mathrm{rads} / \mathrm{s}$, has $V_{o c}=3.71+-$ $15.9 \% \mathrm{~V}$ and $Z_{0}=2.38-j 0.667 \mathrm{~W}$. At this frequency, the minimal realization of the Thevenin's impedance will have a
(A) resistor and a capacitor and an inductor
(B) resistor and a capacitor
(C) resistor and an inductor
(D) capacitor and an inductor
Q. 42 The time constant for the given circuit will be

(A) $1 / 9 \mathrm{~s}$
(B) $1 / 4 \mathrm{~s}$
(C) 4 s
(D) 9 s

The resonant frequency for the given circuit will be

(A) $1 \mathrm{rad} / \mathrm{s}$
(B) $2 \mathrm{rad} / \mathrm{s}$
(C) $3 \mathrm{rad} / \mathrm{s}$
(D) $4 \mathrm{rad} / \mathrm{s}$

Assuming ideal elements in the circuit shown below, the voltage $V_{a b}$ will be

(A) -3 V
(B) 0 V
(C) 3 V
(D) 5 V

Statement for Linked Answer Question 45 and 46

The current $i(t)$ sketched in the figure flows through a initially uncharged 0.3 nF capacitor.

The charge stored in the capacitor at $t=5 \mathrm{~ms}$, will be
(A) 8 nC
(B) 10 nC
(C) 13 nC
(D) 16 nC

The capacitor charged upto 5 ms , as per the current profile given in the figure, is connected across an inductor of 0.6 mH . Then the value of voltage across the capacitor after 1 ms will approximately be
(A) 18.8 V
(B) 23.5 V
(C) -23.5 V
(D) -30.6 V

In the circuit shown in the figure, the value of the current i will be given by

(A) 0.31 A
(B) 1.25 A
(C) 1.75 A
(D) 2.5 A

Two point charges $Q_{1}=10 \mathrm{mC}$ and $Q_{2}=20 \mathrm{mC}$ are placed at coordinates $(1,1,0)$ and $(-1,-1,0)$ respectively. The total electric flux passing through a plane $z=20$ will be
(A) 7.5 mC
(B) 13.5 mC
(C) 15.0 mC
(D) 22.5 mC

A capacitor consists of two metal plates each $500 \# 500 \mathrm{~mm}_{2}$ and spaced 6 mm apart. The space between the metal plates is filled with a glass plate of 4 mm thickness and a layer of paper of 2 mm thickness. The relative primitivities of the glass and paper are 8 and 2 respectively. Neglecting the fringing effect, the capacitance will be (Given that $e_{0}=8.85 \# 10^{-12} \mathrm{~F} / \mathrm{m}$)
(A) 983.3 pF
(B) 1475 pF
(C) 637.7 pF
(D) 9956.25 pF
Q. 50
Q. 51
Q. 52
Q. 53

Divergence of the vector field
$V(x, y, z)=-(x \cos x y+y) i$
${ }^{\mathrm{t}}+(y \cos x y) j$
(A) $2 z \cos z^{2}$
(C) $x \sin x y-\cos z$
$\mathrm{t}+\left(\sin z^{2}+x^{2} \quad \underset{+y) k \text { is }}{2}\right.$
(B) $\sin x y+2 z \cos z^{2}$
(D) None of these

The state equation for the current I_{1} in the network shown below in terms of the voltage V_{X} and the independent source V, is given by

(A) $\frac{d I_{1}}{d t}=-1.4 V_{X}-3.75 I_{1}$
(B) $\frac{d I_{1}}{d t}=1.4 \mathrm{~V}_{X}-3.75 I_{1}-\frac{5}{4} V$
(C) $\frac{d I_{1}}{d t}=-1.4 V_{X}+3.75 I_{1}+\frac{5}{4} V$
(D) $\frac{d I_{1}}{d t}=-1.4 \mathrm{~V}_{X}+3.75 I_{1}-\frac{5}{4} \mathrm{~V}$

The R-L-C series circuit shown in figure is supplied from a variable frequency voltage source. The admittance - locus of the R-L-C network at terminals AB for increasing frequency w is

(A)

(B)

(C)

(D)

In the circuit shown in figure. Switch SW_{1} is initially closed and SW_{2} is open. The inductor L carries a current of 10 A and the capacitor charged to 10 V with polarities as indicated. SW_{2} is closed at $t=0$ and SW_{1} is opened at $t=0$. The current through C and the voltage across L at $\left(t=0^{+}\right)$is

(A) $55 \mathrm{~A}, 4.5 \mathrm{~V}$
(B) $5.5 \mathrm{~A}, 45 \mathrm{~V}$
(C) $45 \mathrm{~A}, 5.5 \mathrm{~A}$
(D) $4.5 \mathrm{~A}, 55 \mathrm{~V}$
Q. 55

A 3 V DC supply with an internal resistance of 2 W supplies a passive non-linear resistance characterized by the relation $V_{N L}=I_{N L}{ }^{2}$. The power dissipated in the non linear resistance is
(A) 1.0 W
(B) 1.5 W
(C) 2.5 W
(D) 3.0 W
Q. 56 In the figure given below all phasors are with reference to the potential at point " O ". The locus of voltage phasor $V_{Y X}$ as R is varied from zero to infinity is shown by

(A)

(B)

(C)

(D)

A solid sphere made of insulating material has a radius R and has a total charge Q distributed uniformly in its volume. What is the magnitude of the electric field intensity, E, at a distance $r(0<r<R)$ inside the sphere ?
(A) $\frac{1 Q r}{4 p \mathrm{e}_{0} R^{S}}$
(B) $\frac{3}{4 p e_{0}} \frac{Q r}{R^{5}}$
(C) $\frac{1}{4 \mathrm{pe}_{0}} \frac{Q}{r^{2}}$
(D) $\frac{1}{4 p \mathrm{e}_{0}} \frac{Q R}{r^{3}}$

The matrix A given below in the node incidence matrix of a network. The columns correspond to branches of the network while the rows correspond to nodes. Let $V=\left[V_{1} V_{2} \ldots \ldots V_{6}\right]^{I}$ denote the vector of branch voltages while $I=\left[i_{1} i_{2} \ldots . . i_{6}\right]^{I}$ that of branch currents. The vector $E=\left[\begin{array}{llll}e_{1} & e_{2} & e_{3} & e_{4}\end{array}\right]^{T}$ denotes the vector of node voltages relative to a common ground.

R 1	0 0 0
$\begin{array}{llll}\text { S } & 0 & -1\end{array}$	$\begin{array}{lll}-1 & 1 & 0\end{array}$
${ }^{5}-10$	0-1-1
S	
TS 00	$\begin{array}{llll}-1 & 1 & 0 & 1\end{array}$

Which of the following statement is true ?
(A) The equations $V_{1}-V_{2}+V_{3}=0, V_{3}+V_{4}-V_{5}=0$ are KVL equations for the network for some loops
(B) The equations $V_{1}-V_{3}-V_{6}=0, V_{4}+V_{5}-V_{6}=0$ are KVL equations for the network for some loops
(C) $E=A V$
(D) $A V=0$ are KVI equations for the network

Statement for Linked Answer Question 59 and 60.

An inductor designed with 400 turns coil wound on an iron core of $16 \mathrm{~cm}_{2}$ cross sectional area and with a cut of an air gap length of 1 mm . The coil is connected to a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ ac supply. Neglect coil resistance, core loss, iron reluctance and leakage inductance, $\left(m_{0}=4 p \# 10^{-7} \mathrm{H} / \mathrm{M}\right)$

The current in the inductor is
(A) 18.08 A
(B) 9.04 A
(C) 4.56 A
(D) 2.28 A
Q. 60
Q. 61

The average force on the core to reduce the air gap will be
(A) 832.29 N
(B) 1666.22 N
(C) 3332.47 N
(D) 6664.84 N
-

The currents (in A) through R_{3} and will be
(A) 1,4
(B) 5,1
(C) 5, 2
(D) 5,4

The parameter type and the matrix parameters that describe the circuit shown are

(A) z parameters, $=0 \quad 0 \quad 0 \quad 0$
(B) h parameters, $=1{ }_{0}^{0} \mathrm{G}$
00
(D) z parameters, $=01{ }^{0} \mathrm{G}$

The phasor diagram which is applicable to this circuit is

(B)

(C)

(D)

An ideal capacitor is charged to a voltage V_{0} and connected at $t=0$ across an ideal inductor L. (The circuit now consists of a capacitor and inductor alone). If we let $w_{0}=\frac{1}{\sqrt{L C}}$, the voltage across the capacitor at time $t>0$ is given by
(A) V_{0}
(B) $V_{0} \cos \left(w_{0} t\right)$
(C) $\mathrm{V}_{0} \sin \left(w_{0} t\right)$
(D) $V_{0} e^{-\omega t}{ }_{0} \cos \left(w_{0} t\right)$

An energy meter connected to an immersion heater (resistive) operating on an AC $230 \mathrm{~V}, 50 \mathrm{~Hz}, \mathrm{AC}$ single phase source reads 2.3 units (kWh) in 1 hour. The heater is removed from the supply and now connected to a 400 V peak square wave source of 150 Hz . The power in kW dissipated by the heater will be
(A) 3.478
(B) 1.739
(C) 1.540
(D) 0.870
(A) 20 V
(B) 10 V
(C) 5 V
(D) 0 V

In the figure given below the value of R is

(A) 2.5 W
(B) 5.0 W
(C) 7.5 W
(D) 10.0 W
a.

The RMS value of the voltage $u(t)=3+4 \cos (3 t)$ is
(A) 17 V
(B) 5 V
(C) 7 V
(D) $(3+2$ 2) V

For the two port network shown in the figure the Z-matrix is given by

(A) $=Z_{1}+Z_{2}$
$Z_{2} \quad G$
(C) $=Z_{2} Z_{1}+Z_{2}$

In the figure given, for the initial capacitor voltage is zero. The switch is closed at $t=0$. The final steady-state voltage across the capacitor is

(B) $=\begin{gathered}Z_{1} \quad Z_{1} \\ Z_{1}+Z_{2} Z_{2} G \\ Z_{1} \quad Z_{1}\end{gathered}$
(D) $=Z_{1} Z_{1}+Z_{2} G$
$\underset{\text { If } E \text { is } \mathrm{V} \text { he }}{\mathrm{V}}$
V is stre electic intensily, 4
$\left(4_{\# E} \underset{\text { i }}{ } \mathrm{V}\right.$ sequal to
(B) $|\mathrm{V}|$
(C) null vector
(D) Zero

Statement for Linked Answer Question 74 and 75.

A coil of inductance 10 H and resistance 40 W is connected as shown in the figure. After the switch S has been in contact with point 1 for a very long time, it is moved to point 2 at, $t=0$.

If, at $\mathrm{t}=0^{+}$, the voltage across the coil is 120 V , the value of resistance R is

(A) 0 W
(B) 20 W
(C) 40 W
(D) 60 W

For the value as obtained in (a), the time taken for 95% of the stored energy to be dissipated is close to
(A) 0.10 sec
(B) 0.15 sec
(C) 0.50 sec
(D) 1.0 sec

The RL circuit of the figure is fed from a constant magnitude, variable frequency sinusoidal voltage source $V_{i n}$. At 100 Hz , the R and L elements each have a voltage drop $m_{R M S}$.If the frequency of the source is changed to 50 Hz , then new voltage drop across R is

(A) $\sqrt{\frac{5}{8}}$ urms
(B) $\sqrt{\frac{2}{3}}$ uRMS
(C) $\sqrt{\frac{8}{5}}$ URMS
(D) $\sqrt{\frac{3}{2}}$ URMS
Q. 77

For the three-phase circuit shown in the figure the ratio of the currents $I_{R}: I_{Y}: I_{B}$ is given by

(A) $1: 1: \sqrt{3}$
(B) $1: 1: 2$
(C) $1: 1: 0$
(D) $1: 1: \sqrt{3} / 2$

The circuit shown in the figure is in steady state, when the switch is closed at $t=0$.Assuming that the inductance is ideal, the current through the inductor at $t=0^{+}$equals

(A) 0 A
(B) 0.5 A
(C) 1 A
(D) 2 A
Q. 79 The charge distribution in a metal-dielectric-semiconductor specimen is shown in the figure. The negative charge density decreases linearly in the semiconductor as shown. The electric field distribution is as shown in

Q. 80

In the given figure, the Thevenin's equivalent pair (voltage, impedance), as seen at the terminals $\mathrm{P}-\mathrm{Q}$, is given by

(A) ($2 \mathrm{~V}, 5 \mathrm{~W}$)
(B) $(2 \mathrm{~V}, 7.5 \mathrm{~W})$
(C) $(4 \mathrm{~V}, 5 \mathrm{~W})$
(D) $(4 \mathrm{~V}, 7.5 \mathrm{~W})$
Q. 81 The value of Z in figure which is most appropriate to cause parallel resonance at 500 Hz is

(A) 125.00 mH
(B) 304.20 mF
(C) 2.0 mF
(D) 0.05 mF
Q. 82 A parallel plate capacitor is shown in figure. It is made two square metal plates of 400 mm side. The 14 mm space between the plates is filled with two layers of dielectrics of $e_{r}=4,6 \mathrm{~mm}$ thick and $e_{r}=2,8 \mathrm{~mm}$ thick. Neglecting fringing of fields at the edge the capacitance is

(A) 1298 pF
(B) 944 pF
(C) 354 pF
(D) 257 pF
Q. 83
Q. 84

The inductance of a long solenoid of length 1000 mm wound uniformly with 3000 turns on a cylindrical paper tube of 60 mm diameter is
(A) 3.2 mH
(B) 3.2 mH
(C) 32.0 mH
(D) 3.2 H

In figure, the value of the source voltage is

(A) 12 V
(B) 24 V
(C) 30 V
(D) 44 V

In figure, R_{a}, R_{b} and R_{c} are $20 \mathrm{~W}, 20 \mathrm{~W}$ and 10 W respectively. The resistances R_{1} , R_{2} and R_{3} in W of an equivalent star-connection are

(A) $2.5,5,5$
(C) 5, 5, 2.5

In figure, the value of resistance R in W is

(A) 10
(B) 20
(C) 30
(D) 40

In figure, the capacitor initially has a charge of 10 Coulomb. The current in the circuit one second after the switch S is closed will be

(A) 14.7 A
(B) 18.5 A
(C) 40.0 A
(D) 50.0 A
Q. 89

The rms value of the current in a wire which carries a d.c. current of 10 A and a sinusoidal alternating current of peak value 20 A is
(A) 10 A
(B) 14.14 A
(C) 15 A
(D) 17.32 A

The element Y_{22} of the corresponding Y-matrix of the same network is given by
(A) 1.2
(B) 0.4
(C) -0.4
(D) 1.8

Figure Shows the waveform of the current passing through an inductor of resistance 1 W and inductance 2 H . The energy absorbed by the inductor in the first four seconds is

(A) 144 J
(B) 98 J
(C) 132 J
(D) 168 J

A segment of a circuit is shown in figure $v_{R}=5 V, v_{c}=4 \sin 2 t$. The voltage v_{L} is given by

$2 \mathrm{H} 3^{-}$
(A) $3-8 \cos 2 t$
(B) $32 \sin 2 t$
(C) $16 \sin 2 t$
(D) $16 \cos 2 t$

In the figure, $Z_{1}=10+-60^{\%}, Z_{2}=10+60^{\%}, Z_{3}=50+53.13^{\%}$.
Thevenin impedance seen form $\mathrm{X}-\mathrm{Y}$ is

(A) $56.66+45 \%$
(B) $60+30 \%$
(C) $70+30 \%$
(D) $34.4+65 \%$

Two conductors are carrying forward and return current of $+I$ and $-I$ as shown in figure. The magnetic field intensity \mathbf{H} at point P is

(A) $\frac{I}{p d} \mathbf{Y}$
(B) $\frac{I}{p d} \mathbf{X}$
(C) $\frac{I}{2 p d} \mathbf{Y}$
(D) $\frac{I}{2 p d} \mathbb{X}$
(A) $2 L \mathrm{H} / \mathrm{m}$
(B) $L / 4 \mathrm{H} / \mathrm{m}$
(C) $L / 2 \mathrm{H} / \mathrm{m}$
(D) $4 L \mathrm{H} / \mathrm{m}$

In the circuit of figure, the magnitudes of V_{L} and $V_{C} \quad$ are twice that of V_{R}. Given that $f=50 \mathrm{~Hz}$, the inductance of the coil is

(A) 2.14 mH
(B) 5.30 H
(C) 31.8 mH
(D) 1.32 H
Q. 97 In figure, the potential difference between points P and Q is

(A) 12 V
(B) 10 V
(C) -6 V
(D) 8 V

Two ac sources feed a common variable resistive load as shown in figure. Under the maximum power transfer condition, the power absorbed by the load resistance R_{L} is

(A) 2200 W
(B) 1250 W
(C) 1000 W
(D) 625 W
a. 99

In figure, the value of R is

(A) 10 W
(B) 18 W
(C) 24 W
(D) 12 W
Q. 100

In the circuit shown in figure, the switch S is closed at time $(\mathrm{t}=0)$. The voltage across the inductance at $t=0^{+}$, is

(A) 2 V
(B) 4 V
(C) -6 V
(D) 8 V

The h-parameters for a two-port network are defined by

$$
={ }_{I_{2}}^{E_{1}} \mathrm{U}==_{h_{21} h_{22}}^{h_{11} h_{12}}{ }_{2} I_{E_{2}}^{I_{2}}
$$

For the two-port network shown in figure, the value of h_{12} is given by

(A) 0.125
(B) 0.167
(C) 0.625
(D) 0.25
Q. 103 A parallel plate capacitor has an electrode area of $100 \mathrm{~mm}_{2}$, with spacing of 0.1 mm between the electrodes. The dielectric between the plates is air with a permittivity of $8.85 \# 10^{-12} \mathrm{~F} / \mathrm{m}$. The charge on the capacitor is 100 V . The stored energy in the capacitor is
(A) 8.85 pJ
(B) 440 pJ
(C) 22.1 nJ
(D) 44.3 nJ

A composite parallel plate capacitor is made up of two different dielectric material with different thickness (t_{1} and t_{2}) as shown in figure. The two different dielectric materials are separated by a conducting foil F . The voltage of the conducting foil is

(A) 52 V
(B) 60 V
(C) 67 V
(D) 33 V

SOLUTION

Option (B) is correct.
In the equivalent star connection, the resistance can be given as

$$
R_{C}=\frac{R_{b} R_{a}}{R_{a}+R_{b}+R_{c}} ; R_{B}=\frac{R_{a} R_{c}}{R_{a}+R_{b}+R_{c}} \text { and } R_{A}=\frac{R_{b} R_{c}}{R_{a}+R_{b}+R_{c}}
$$

So, if the delta connection components R_{a}, R_{b} and R_{c} are scaled by a factor k then

$$
R_{A} \mathrm{I}=\frac{\wedge_{k} R_{b} \mathrm{~h}^{\wedge} k R_{c} \mathrm{~h}}{k R_{a}+k R_{b}+k R_{c}}=\frac{k^{2}}{k} \frac{R_{b} R_{c}}{R_{a}+R_{b}+R_{c}}=k R_{A}
$$

Hence, it is also scaled by a factor k
Option (A) is correct.
Given, flux density

$$
B^{\mathbf{v}}=4 x a_{x}^{\mathbf{v}}+2 k y a^{\mathbf{v}}+8 a_{z}^{\mathbf{v}}
$$

Since, magnetic flux density is always divergence less.
i.e.,

$$
\mathrm{d} \$ B=0
$$

So, for given vector flux density, we have

$$
\mathrm{d} \$ B=4+2 k+0=0
$$

or,

$$
k=-2
$$

Option (B) is correct.
Consider the voltage source and load shown in figure

$$
I_{I_{i}}=10-150^{\circ} \mathrm{A}
$$

We obtain the power delivered by load as

$$
\begin{aligned}
P_{\text {delivered }} & =I_{L}{ }^{*} V_{L}=\wedge 10+150 \mathrm{ch} \mathrm{~h}^{\wedge} 1060 \mathrm{ch}=100210 \mathrm{c} \\
& =1000 \cos 210 \mathrm{c}+j 1000 \sin 210 \mathrm{c} \\
& =-866.025-j 500
\end{aligned}
$$

As both the reactive and average power (real power) are negative so, power is absorbed by load. i.e., load absorbs real as well as reactive power.
Option (C) is correct.
For the purely resistive load, maximum average power is transferred when

$$
R_{L}=R_{T h}^{2}+X_{T h}^{2}
$$

where $R_{T h}+j X_{T h}$ is the equivalent thevinin (input) impedance of the circuit.

$$
R_{L}=\sqrt{4^{2}+3^{2}}=5 \mathrm{~W}
$$

For the given capacitance, $C=100 \mathrm{mF}$ in the circuit, we have the reactance.

$$
\begin{aligned}
X_{C} & =\frac{1}{s c}=\frac{1}{s \# 100 \# 10^{\circ}}=\frac{10^{4}}{s} \\
\text { So, } & \frac{V_{2} \wedge_{s} h}{V_{1} \wedge_{s} h}=\frac{\frac{10^{4}}{s}+10{ }^{4}}{\frac{10^{4}}{s}+10^{4}+\frac{10^{4}}{s}}=\frac{s+1}{s+2}
\end{aligned}
$$

Sol. $6 \quad$ Option (B) is correct.
Energy density stored in a dielectric medium is obtained as

$$
w_{E}=\frac{1}{2} e|E| \quad \mathrm{J} / \mathrm{m}^{2}
$$

The electric field inside the dielectric will be same to given field in free space only if the field is tangential to the interface

So,

$$
w_{E}=\frac{1}{2} 2 \mathrm{e}_{0} \wedge^{\sqrt{2}^{2}} 6+8 \mathrm{~h} \quad \# 10 / \mathrm{mm}
$$

Therefore, the total stored energy is

$$
\begin{aligned}
W_{E} & =\#_{v} W_{E} d v=e_{0} 100 \# 10^{6} / \mathrm{mm}^{2} \#^{\wedge} 500 \# 500 \mathrm{~h} \mathrm{~mm}^{2} \#^{\wedge} 0.4 \mathrm{~h} \\
& =e_{0} \# 100 \# 10^{6} \# 0.4 \# 25 \# 10^{4} \\
& =8.85 \# 10^{-12} \# 10^{13}=88.5 \mathrm{~J}
\end{aligned}
$$

Option (C) is correct.

Consider that the voltage across the three capacitors $C_{1}, C_{2} V_{3}$ and C_{3} are V_{1}, V_{2} and respectively. So, we can write

$$
\begin{equation*}
\frac{V_{2}}{V_{3}}=\frac{C_{3}}{C_{2}} \tag{1}
\end{equation*}
$$

Since, Voltage is inversely proportional to capacitance
Now, given that

$$
\begin{aligned}
& C=10 \mathrm{mF} ; V=10 \mathrm{~V} \\
& C^{\prime}=5 \mathrm{mF} ; \hat{V}^{, h_{\text {mex }}}=5 \mathrm{~V} \\
& C_{3}^{2}=2 m F ; \underset{n_{3} h_{\text {max }}}{N_{\text {hax }}}=2 \mathrm{~V}
\end{aligned}
$$

So, from Eq (1) we have

$$
\begin{aligned}
& \frac{V_{2}}{V_{3}}=\frac{}{5} \\
& \text { for } \quad V^{V_{3}}=2 \\
& \text { We obtain, } \\
& \wedge^{3} h_{\text {max }} \\
& \begin{array}{l}
V_{2}=\frac{2 \# 2}{5}=0.8 \text { volt }<5 \\
V<V
\end{array} \\
& \text { i.e., } \\
& { }^{\wedge}{ }_{2} h_{\text {max }}
\end{aligned}
$$

Hence, this is the voltage at C_{2}. Therefore,
and

$$
\begin{aligned}
& V_{3}=2 \text { volt } \\
& V_{2}=0.8 \text { volt } \\
& V_{1}=V_{2}+V_{3}=2.8 \text { volt }
\end{aligned}
$$

Now, equivalent capacitance across the terminal is

$$
C_{e q}=\frac{C_{2} C_{3}}{C_{2}+C_{3}}+C_{1}=\frac{5 \# 2}{5+2}+10=\frac{80}{7} \mathrm{mF}
$$

Equivalent voltage is (max. value)

$$
V_{\max }=V_{1}=2.8
$$

So, charge stored in the effective capacitance is

$$
Q=C_{e q} V_{\max }=\mathrm{b} \frac{80}{7} \mathrm{I} \#^{\wedge} 2.8 \mathrm{~h}=32 \mathrm{mC}
$$

Option (C) is correct.
For evaluating the equivalent thevenin voltage seen by the load R_{L}, we open the circuit across it (also if it consist dependent source).
The equivalent circuit is shown below

As the circuit open across R_{L} so

$$
I_{2}=0
$$

or, $\quad j 40 I_{2}=0$
i.e., the dependent source in loop 1 is short circuited. Therefore,

$$
\begin{aligned}
V_{L 1} & ={ }_{j 4} \underline{i} \underline{i} \underline{4 h V_{s}} \\
V_{T h}=10 V_{L 1} & =\frac{j 40}{j 4+3} 100 \quad 53.13 \mathrm{C}=\frac{40 / 90 \mathrm{c}}{5 / 53.13 \mathrm{C}} 100 / 53.13 \mathrm{C} \\
& =800 \underline{\mathrm{C}}
\end{aligned}
$$

Option (C) is correct.

Applying nodal analysis at top node.

Current
Option (C) is correct.

$$
\begin{aligned}
& \frac{\boldsymbol{V}_{1}+1 \emptyset \mathrm{c}}{1}+\frac{\boldsymbol{V}_{1}+1 \emptyset \mathrm{c}}{j 1}=10 \mathrm{c} \\
& \boldsymbol{V}_{1}(j 1+1)+j 1+1 \emptyset \mathrm{c}=j 1 \\
& \boldsymbol{V}_{1}=\frac{-1}{1+j 1} \\
& \boldsymbol{I}_{1}=\frac{\boldsymbol{V}_{1}+1 \emptyset \mathrm{c}}{j 1}=\frac{-\frac{1}{1+j}+1}{j 1}=\frac{j}{(1+j) j}=\frac{1}{1+j} \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
G(s) & =\frac{\left(s^{2}+9\right)(s+2)}{(s+1)(s+3)(s+4)} \\
G(j w) & =\frac{\left(-w^{2}+9\right)(j w+2)}{(j w+1)(j w+3)(j w+4)}
\end{aligned}
$$

The steady state output will be zero if

$$
\begin{aligned}
|G(j w)| & =0 \\
-w^{2}+9 & =0 \\
w & =3 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Sol. 11 Option (A) is correct.
We put a test source between terminal 1,2 to obtain equivalent impedance

$$
Z_{T h}=\frac{V_{t e s t}}{I_{\text {test }}}
$$

Applying KCL at top right node

$$
\begin{align*}
\frac{V_{\text {test }}}{9 \mathrm{k}+1 \mathrm{k}}+\frac{V_{\text {test }}}{100}-99 I_{b} & =I_{\text {test }} \\
\frac{V_{\text {test }}}{10 \mathrm{k}}+\frac{V_{\text {test }}}{100}-99 I_{b} & =I_{\text {test }} \tag{i}\\
I_{b} & =-\frac{V_{\text {test }}}{9 k+1 k}=-\frac{V_{\text {test }}}{10 \mathrm{k}}
\end{align*}
$$

But
Substituting I_{b} into equation (i), we have

$$
\begin{aligned}
\frac{V_{\text {test }}}{10 \mathrm{k}}+\frac{V_{\text {test }}}{100}+\frac{99 V_{\text {test }}}{10 \mathrm{k}} & =I_{\text {test }} \\
\frac{100 V_{\text {test }}}{10 \# 10^{3}}+\frac{V_{\text {test }}}{100} & =I_{\text {test }} \\
\frac{2 V_{\text {test }}}{100} & =I_{\text {test }} \\
Z_{\text {Th }} & =\frac{V_{\text {test }}}{I_{\text {test }}}=50 \mathrm{~W}
\end{aligned}
$$

Sol. 12 Option (B) is correct.
In phasor form

$$
\begin{aligned}
& Z=4-j 3 \\
& Z=5-z 6.86 \mathrm{cW}
\end{aligned}
$$

$$
I=5100 \mathrm{cA}
$$

Average power delivered :

$$
P_{\text {avg. }}=\frac{1}{2}|\boldsymbol{I}|^{2} Z \cos q=\frac{1}{2} \# 25 \# 5 \cos 36.86 \mathrm{c}=50 \mathrm{~W}
$$

Alternate Method:

$$
\begin{gathered}
Z=(4-j 3) \mathrm{W} \\
I=5 \cos (100 p t+100) \mathrm{A} \\
P_{\text {avg }}=\frac{1}{2} 2 \operatorname{Re} \$ I^{2} Z .=\underline{1}_{2}^{2} \# \operatorname{Re"}(5)^{2} \#(4-j 3),={ }^{-} 2 \# 100=50 \mathrm{~W}
\end{gathered}
$$

Option (D) is correct.
The s-domain equivalent circuit is shown as below.

$$
\begin{aligned}
I(s) & =\frac{v_{c}(0) / s}{\frac{1}{C_{1} s}+\frac{1}{C_{2} s}}=\frac{v_{c}(0)}{\frac{1}{C_{1}}+\frac{1}{C_{2}}} \\
& =\mathrm{b} \frac{C_{1} C_{2}}{C_{1}+C_{2}}(12 \mathrm{~V}) \\
& =12 C_{e q}
\end{aligned}
$$

$$
v_{C}(0)=12 \mathrm{~V}
$$

Taking inverse Laplace transform for the current in time domain,

$$
i(t)=12 C_{e q} d(t)
$$

Option (A) is correct.
In the given circuit,

$$
\begin{aligned}
& V_{A}-V_{B}=6 \mathrm{~V} \\
& I_{A B}=\frac{6}{2}=3 \mathrm{~A}
\end{aligned}
$$

We can see, that the circuit is a one port circuit looking from terminal $B D$ as shown below

For a one port network current entering one terminal, equals the current leaving the second terminal. Thus the outgoing current from A to B will be equal to the incoming current from D to C as shown
i.e.

$$
I_{D C}=I_{A B}=3 \mathrm{~A}
$$

The total current in the resistor 1 W will be

So,

$$
\begin{aligned}
I_{1} & =2+I_{D C} \\
& =2+3=5 \mathrm{~A} \\
V_{C D} & =1 \#\left(-I_{1}\right)=-5 \mathrm{~V}
\end{aligned}
$$

Option (A) is correct.
We obtain Thevenin equivalent of circuit B.

Thevenin Impedance :

$$
Z_{T h}=R
$$

Thevenin Voltage :

$$
V_{T h}=30 \mathrm{c} \mathrm{~V}
$$

Now, circuit becomes as

Current in the circuit,

$$
I_{1}=\frac{10-3}{2+R}
$$

Power transfer from circuit A to B

$$
\begin{aligned}
P & =\left(I_{1}{ }^{2}\right)^{2} R+3 I_{1} \\
& =\frac{10-3}{2+R} \mathrm{D} R+3: \frac{10-3}{2+R} \mathrm{D}=\frac{49 R}{(2+R)^{2}}+\frac{21}{(2+R)} \\
& =\frac{49 R \pm 21(2 \pm R)}{(2+R)^{2}(2+R)^{2}}=\frac{42}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d P}{d R}=\frac{(2+R)^{2} 70-(42+70 R) 2(2+R)}{(2+R)^{4}}=0 \\
&(2+R)[(2+R) 70-(42+70 R) 2]=0 \\
& 140+70 R-84-140 R=0 \\
& 56=70 R \\
& R=0.8 \mathrm{~W}
\end{aligned}
$$

Option (C) is correct.
When 10 V is connected at port A the network is

Now, we obtain Thevenin equivalent for the circuit seen at load terminal, let Thevenin voltage is $V_{T h, 10} \mathrm{v}$ with 10 V applied at port A and Thevenin resistance is $R_{T h}$.

$$
I_{L}=\frac{V_{T h, 10}}{R_{T h}+R_{L}}
$$

For $R_{L}=1 \mathrm{~W}, I_{L}=3 \mathrm{~A}$

$$
\begin{equation*}
3=\frac{V_{T h, 10} \mathrm{v}}{R_{T h}+1} \tag{i}
\end{equation*}
$$

For $R_{L}=2.5 \mathrm{~W}, I_{L}=2 \mathrm{~A}$

$$
\begin{equation*}
2=\frac{V_{T h, 10 \mathrm{v}}}{R_{T h}+2.5} \tag{ii}
\end{equation*}
$$

Dividing above two

$$
\begin{aligned}
\frac{3}{2} & =\frac{R_{T h}+2.5}{R_{T h}+1} \\
3 R_{T h}+3 & =2 R_{T h}+5 \\
R_{T h} & =2 \mathrm{~W}
\end{aligned}
$$

Substituting $R_{T h}$ into equation (i)

$$
V_{T h, 10} \mathrm{v}=3(2+1)=9 \mathrm{~V}
$$

Note that it is a non reciprocal two port network. Thevenin voltage seen at port B depends on the voltage connected at port A. Therefore we took subscript $V_{T h, 10 \mathrm{v}}$. This is Thevenin voltage only when 10 V source is connected at input port A. If the voltage connected to port A is different, then Thevenin voltage will be different. However, Thevenin's resistance remains same.
Now, the circuit is

For $R_{L}=7 \mathrm{~W}$,
Option (B) is correct.

$$
I_{L}=\frac{V_{T h, 10 \mathrm{v}}}{2+R_{L}}=\frac{9}{2+7}=1 \mathrm{~A}
$$

Now, when 6 V connected at port A let Thevenin voltage seen at port B is $V_{T h, 6 \mathrm{~V}}$.
Here $R_{L}=1 \mathrm{~W}$ and $I_{L}=\frac{7}{3} \mathrm{~A}$

$$
V_{T h, 6 \mathrm{~V}}=R_{T h} \#^{\frac{7}{3}} 3+1 \#^{\frac{7}{3}} 3=2 \underline{7}^{7}+\underline{7}_{3}=7 \mathrm{~V}
$$

This is a linear network, so $V_{T h}$ at port B can be written as

$$
V_{T h}=V_{1} a+b
$$

where V_{1} is the input applied at port A.
We have $V_{1}=10 \mathrm{~V}, V_{T h, 10 \mathrm{~V}}=9 \mathrm{~V}$

$$
\begin{equation*}
9=10 a+b \tag{i}
\end{equation*}
$$

When $V_{1}=6 \mathrm{~V}, V_{T h, ~} 6 \mathrm{~V}=9 \mathrm{~V}$

$$
\begin{equation*}
7=6 a+b \tag{ii}
\end{equation*}
$$

Solving (i) and (ii)

$$
a=0.5, b=4
$$

Thus, with any voltage V_{1} applied at port A, Thevenin voltage or open circuit voltage at port B will be

So,

$$
\begin{aligned}
V_{T h, V_{1}} & =0.5 V_{1}+4 \\
V_{1} & =8 \mathrm{~V} \\
V_{T h, 8 \mathrm{~V}} & =0.5 \# 8+4=8=V_{o c} \quad \text { (open circuit voltage) }
\end{aligned}
$$

Option (A) is correct.
By taking $\boldsymbol{V}_{1}, \boldsymbol{V}_{2}$ and \boldsymbol{V}_{3} all are phasor voltages.

$$
V_{1}=V_{2}+V_{3}
$$

Magnitude of $\boldsymbol{V}_{1}, \boldsymbol{V}_{2}$ and \boldsymbol{V}_{3} are given as

$$
V_{1}=220 \mathrm{~V}, V_{2}=122 \mathrm{~V}, V_{3}=136 \mathrm{~V}
$$

Since voltage across R is in same phase with V_{1} and the voltage V_{3} has a phase difference of q with voltage \boldsymbol{V}_{1}, we write in polar form

$$
\begin{aligned}
\boldsymbol{V}_{1} & =V_{2} \emptyset \mathrm{c}+V_{3} q / \\
\boldsymbol{V}_{1} & =V_{2}+V_{3} \cos q+j V_{3} \sin q \\
\boldsymbol{V}_{1} & =\left(V_{2}+V_{3} \cos q\right)+j V_{3} \sin q \\
\left|\boldsymbol{V}_{1}\right| & =\checkmark\left(\overline{\left.V_{2}+V_{3} \cos q\right)^{2}+\left(V_{2} \sin q\right)^{2}}\right. \\
220 & =,(122+136 \cos q)^{2}+(136 \sin q)^{2}
\end{aligned}
$$

Solving, power factor

$$
\cos q=0.45
$$

Option (B) is correct.
Voltage across load resistance

$$
V_{R L}=V_{3} \cos q=136 \# 0.45=61.2 \mathrm{~V}
$$

Power absorbed in $R_{L} \quad P_{L}=\frac{V_{R L}{ }^{2}}{R_{L}}=\frac{(61.2)^{2}}{5}-750 \mathrm{~W}$
Option (B) is correct.
The frequency domains equivalent circuit at $w=1 \mathrm{rad} / \mathrm{sec}$.

Since the capacitor and inductive reactances are equal in magnitude, the net impedance of that branch will become zero. Equivalent circuit

Current
rms value of current

$$
\begin{aligned}
i(t) & =\frac{\sin t}{1 \mathrm{~W}}=(1 \sin t) \mathrm{A} \\
i_{\mathrm{rms}} & =\frac{1}{\sqrt{2}} \mathrm{~A}
\end{aligned}
$$

Option (D) is correct.
Voltage in time domain

$$
v(t)=100, ~ 2 \cos (100 p t)
$$

Current in time domain

$$
i(t)=10, ~ 2 \sin (100 p t+p / 4)
$$

Applying the following trigonometric identity

$$
\sin (f)=\cos (f-90 c)
$$

So,

$$
i(t)=10 \sqrt{2} \cos (100 p t+p / 4-p / 2)=102 \cos (100 p t-p / 4)
$$

In phasor form,

$$
I=\frac{10 \sqrt{2}}{\sqrt{2}} \mu^{-p / 4}
$$

Option (A) is correct.

Power transferred to the load

$$
P=I_{R}^{R}=_{\mathrm{b} \frac{1}{R t h+\left.R_{L}\right|^{2}}} R_{L}
$$

For maximum power transfer $R_{t h}$, should be minimum.

$$
\begin{aligned}
R_{t h} & =\frac{6 R}{6+R}=0 \\
R & =0
\end{aligned}
$$

Note: Since load resistance is constant so we choose a minimum value of $R_{t h}$

$$
C=\frac{e_{0} e_{r} A}{d}
$$

when
Option (C) is correct.
Charge

$$
\begin{aligned}
& Q=C V= \\
& Q=Q_{\max }
\end{aligned} \quad \frac{e_{0} e_{r} A}{d} V=\left(e_{0} e_{r} A\right)^{\frac{V}{d}}
$$

We have $e_{0}=8.85 \# 10^{-14} \mathrm{~F} / \mathrm{cm}, \boldsymbol{e}_{r}=2.26, A=20 \# 40 \mathrm{~cm}^{2}$

$$
\frac{V}{d}=50 \# 10^{3} \mathrm{kV} / \mathrm{cm}
$$

Maximum electrical charge on the capacitor

$$
\frac{V}{d}=\mathrm{b} \frac{V}{d l_{\max }}=J u \mathrm{~K} \mathrm{~V} / \mathrm{cinl}
$$

Thus,

$$
Q=8.85 \# 10^{-14} \# 2.26 \# 20 \# 40 \# 50 \# 10^{3}=8 \mathrm{mC}
$$

Option (C) is correct.

$$
v_{i}=100 \checkmark / 2 \sin (100 \mathrm{p} t) \mathrm{V}
$$

Fundamental component of current

$$
i_{i 1}=10,2 \sin (100 \mathrm{p} t-\mathrm{p} / 3) \mathrm{A}
$$

Input power factor

$$
p f=\frac{I_{1(r m s)}}{I_{m s}} \cos f_{1}
$$

$I_{1(r m s)}$ is rms values of fundamental component of current and $I_{r m s}$ is the rms value of converter current.

$$
p f=\frac{10}{\sqrt{10^{2}+5^{2}+2^{2}}} \cos p / 3=0.44
$$

Sol. 26 Option (B) is correct.
Only the fundamental component of current contributes to the mean ac input power. The power due to the harmonic components of current is zero.
So,

$$
P_{\text {in }}=V_{r m s} I_{1 r m s} \cos f_{1}=100 \# 10 \cos p / 3=500 \mathrm{~W}
$$

Option (B) is correct.
Power delivered by the source will be equal to power dissipated by the resistor.

$$
P=V_{s} I_{s} \cos p / 4=1 \# 2 \cos p / 4=1 \mathrm{~W}
$$

Option (D) is correct.

$$
\begin{aligned}
\overline{I_{C}} & =\overline{I_{s}}-T \quad \sqrt{R} \quad=2 p / 4-/ 2-p / 4 \\
& =\sqrt{ } 2 \$_{\wedge} \cos p / 4+j \sin p / 4_{h} \underset{\wedge}{\cos p / 4-j \sin p / 4 .} \\
& =2 \sqrt{ }{ }^{2} j \sin p / 4=2 j
\end{aligned}
$$

Option (B) is correct.
For $t<0$, the switch was closed for a long time so equivalent circuit is

Voltage across capacitor at $t=0_{5}$

$$
v_{c}(0)=4 \frac{\mathrm{~J}}{\#}{ }^{5}=4 \mathrm{~V}
$$

Now switch is opened, so equivalent circuit is

For capacitor at $t=0^{+}$

$$
v_{c}\left(0^{+}\right)=v_{c}(0)=4 \mathrm{~V}
$$

current in 4 W resistor at $t=0_{+}, i_{1}={ }_{c}^{v} \frac{\left(0_{+}\right)}{4}=1 \mathrm{~A}$
so current in capacitor at $t=0^{+}, i_{c}\left(0^{+}\right)=i_{1}=1 \mathrm{~A}$
Option (B) is correct.
Thevenin equivalent across 1 X resistor can be obtain as following

Open circuit voltage
Short circuit current

$$
\begin{aligned}
v_{t h} & =100 \mathrm{~V} & & (i=0) \\
i_{s c} & =100 \mathrm{~A} & & \left(v_{t h}=0\right)
\end{aligned}
$$

So,

$$
R_{t h}=\frac{v_{t h}}{i_{s c}}=\frac{100}{100}=1 \mathrm{~W}
$$

Equivalent circuit is

Option (B) is correct.
The circuit is

Current in $R \mathrm{~W}$ resistor is

$$
i=2-1=1 \mathrm{~A}
$$

Voltage across 12 W resistor is

So,

$$
V_{A}=1 \# 12=12 \mathrm{~V}
$$

$$
i=\frac{V_{A}-6}{R}=\frac{12-6}{1}=6 \mathrm{~W}
$$

Option (C) is correct.

$V_{1}=Z_{11} I_{1}+Z_{12} I_{2}$
$V_{2}=Z_{21} I_{1}+Z_{22} I_{2}$
Here, $I_{1}=I I_{1}, I_{2}=I I_{2}$
When $R=1 \mathrm{~W}$ is connected

$$
\begin{aligned}
V_{1} & =V_{1}+I l_{1} \# 1=V_{1}+I_{1} \\
V_{1} & =Z_{11} I_{1}+Z_{12} I_{2}+I_{1} \\
V_{1} & =\left(Z_{11}+1\right) I_{1}+Z_{12} I_{2} \\
Z l_{11} & =Z_{11}+1 \\
Z l_{12} & =Z_{12}
\end{aligned}
$$

Similarly for output port

$$
V \mathrm{I}_{2}=Z \mathrm{I}_{21} I \mathrm{I}_{1}+Z \mathrm{I}_{22} I \mathrm{I}_{2}=Z \mathrm{I}_{21} I_{1}+Z \mathrm{I}_{22} I_{2}
$$

So, $Z I_{21}=Z_{21}, Z I_{22}=Z_{22}$
Z-matrix is

$$
Z=\begin{gathered}
Z_{11}+1 Z_{12} \\
Z_{21} Z_{22}
\end{gathered}
$$

Option (A) is correct.

In the bridge

$$
R_{1} R_{4}=R_{2} R_{3}=1
$$

So it is a balanced bridge

$$
I=0 \mathrm{~mA}
$$

Option (D) is correct.

Resistance of the bulb rated $200 \mathrm{~W} / 220 \mathrm{~V}$ is

$$
R_{1}=\frac{V^{2}}{P_{1}}=\frac{(220)^{2}}{200}=242 \mathrm{~W}
$$

Resistance of $100 \mathrm{~W} / 220 \mathrm{~V}$ lamp is

$$
R_{T}=\frac{V^{2}}{P_{2}}=\frac{(220)^{2}}{100}=484 \mathrm{~W}
$$

To connect in series

$$
\begin{aligned}
R_{T} & =n \# R_{1} \\
484 & =n \# 242 \\
n & =2
\end{aligned}
$$

Option (D) is correct.
For $t<0, S_{1}$ is closed and S_{2} is opened so the capacitor C_{1} will charged upto 3 volt.

$$
V_{C 1}(0)=3 \text { Volt }
$$

Now when switch positions are changed, by applying charge conservation

$$
\begin{gathered}
C_{e q} V_{C^{1}}\left(0^{+}\right)=C_{1} V_{C 1}\left(0^{+}\right)+C_{2} V_{C^{2}}\left(0^{+}\right) \\
(2+1) \# 3=1 \# 3+2 \# V_{C^{2}}\left(0^{+}\right) \\
9=3+2 V_{C^{2}}\left(0^{+}\right) \\
V_{C^{2}}\left(0^{+}\right)=3 \text { Volt }
\end{gathered}
$$

Sol. $36 \quad$ Option (A) is correct.

Applying KVL in the input loop

$$
v_{1}-i_{1}(1+1) \# \quad 10^{3}-\frac{1}{j \mathrm{w} C}\left(i_{1}+49 i_{1}\right)=0
$$

$$
\begin{array}{ll}
& v_{1}=2 \# 10^{3} i_{1}+\frac{1}{j \mathrm{w} C} 50 i_{1} \\
\text { Input impedance, } & Z_{1}=\frac{v_{1}}{i_{1}}=2 \# 10^{3}+\frac{1}{j \mathrm{w}(C / 50)} \\
\text { Equivalent capacitance, } & C_{e q}=\frac{C}{50}=\frac{100 n \mathrm{~F}}{50}=2 \mathrm{nF}
\end{array}
$$

Option (B) is correct.
Voltage across 2 X resistor, $V_{S}=2 \mathrm{~V}$
Current,

$$
I_{2} \mathrm{~W}=\frac{V_{S}}{2}=\frac{4}{2}=2 \mathrm{~A}
$$

To make the current double we have to take

$$
V_{S}=8 \mathrm{~V}
$$

Option (B) is correct.
To obtain equivalent Thevenin circuit, put a test source between terminals AB

Applying KCL at super node

$$
\begin{align*}
\frac{V}{P^{2}}-5+\frac{V}{2^{P+}} 1^{s} & =I_{S} \\
V_{P}-5+V_{P}+2 V_{S} & =2 I_{S} \\
2 V_{P}+2 V_{S} & =2 I_{s}+5 \\
V_{P}+V_{S} & =I_{S}+2.5 \tag{1}\\
V_{P}-V_{S} & =3 V_{S}
\end{align*}
$$

\&

$$
V_{P}=4 V_{S}
$$

So,

$$
\begin{align*}
4 V_{S}+V_{S} & =I_{S}+2.5 \\
5 V_{S} & =I_{S}+2.5 \\
V_{S} & =0.2 I_{S}+0.5 \tag{2}
\end{align*}
$$

For Thevenin equivalent circuit

$$
\begin{equation*}
V_{S}=I_{S} R_{t h}+V_{t h} \tag{3}
\end{equation*}
$$

By comparing (2) and (3),
Thevenin resistance $R_{t h}=0.2 \mathrm{~kW}$
Option (D) is correct.
From above

$$
V_{t h}=0.5 \mathrm{~V}
$$

Option (A) is correct.
No. of chords is given as

$$
\begin{gathered}
l=b-n+1 \\
b \text { " no. of branches } \\
n " \text { no. of nodes } \\
l " \text { no. of chords }
\end{gathered}
$$

$b=6, n=4$

$$
l=6-4+1=3
$$

Option (A) is correct.
Impedance $\quad Z_{o}=2.38-j 0.667 \mathrm{~W}$
Constant term in impedance indicates that there is a resistance in the circuit.
Assume that only a resistance and capacitor are in the circuit, phase difference in Thevenin voltage is given as

$$
\begin{aligned}
\mathrm{q} & =-\tan ^{-1}(\mathrm{w} C R) \\
Z_{o} & =R-\frac{j}{\mathrm{w} C}
\end{aligned}
$$

So,

$$
\frac{1}{\mathrm{w} C}=0.667
$$

and

$$
R=2.38 \mathrm{~W}
$$

$$
\begin{aligned}
\mathrm{q} & =-\tan \quad \mathrm{b} \quad \frac{1 \# 2.38}{0.667} \quad \mathrm{I}=-74.34 \mathrm{c}=[\quad-15.9 \mathrm{c} \\
V_{o c} & =3.71+-15.9 \mathrm{c}
\end{aligned}
$$

given
So, there is an inductor also connected in the circuit

Option (C) is correct.
Time constant of the circuit can be calculated by simplifying the circuit as follows

$$
C_{e q}=\underline{2}_{3} \mathrm{~F}
$$

Equivalent Resistance

Time constant

$$
\begin{aligned}
R_{e q} & =3+3=6 \mathrm{~W} \\
\mathrm{t} & =R_{e q} C_{e q}=6 \# \quad \frac{2}{3}=4 \mathrm{sec}
\end{aligned}
$$

Option (C) is correct.
Impedance of the circuit is

$$
\begin{aligned}
Z & =j \mathrm{w} L+\frac{\frac{1}{j w C} R}{\frac{j w}{j \mathrm{c}}+R}=j \mathrm{w} L+\frac{R}{1+j \mathrm{w} C R} \quad \# \frac{1-j \mathrm{w} C R}{1-j \mathrm{w} C R} \\
& =j^{w+L^{R(1-j w R)=j \mathrm{w} L\left(1+\mathrm{w}^{2} C^{2} R^{2}\right)+R-j \mathrm{w} C R^{2}}} \\
& 1+\mathrm{w}^{2} C^{2} R^{2} 1+\overline{\mathrm{w}^{2} C^{2} R^{2}} \\
& =\frac{R}{1+\mathrm{w}^{2} C^{2} R^{2}}+\frac{j\left[\mathrm{w} L\left(1+\mathrm{w}^{2} C^{2} R^{2}\right)-\mathrm{wCR} R^{2}\right]}{1+\mathrm{w}^{2} C^{2} R^{2}}
\end{aligned}
$$

For resonance $\operatorname{Im}(Z)=0$
So,

$$
\mathrm{w} L\left(1+\mathrm{w}^{2} C^{2} R^{2}\right)=\mathrm{w} C R^{2}
$$

$L=0.1 \mathrm{H}, C=1 \mathrm{~F}, R=1 \mathrm{~W}$
So,

$$
\begin{aligned}
\mathrm{w} \# 0.1\left[1+\mathrm{w}^{2}\right. & (1)(1)]=\mathrm{w}(1)(1)^{2} \\
1+\mathrm{w}^{2} & =10 \\
\mathrm{w} & =\sqrt{ } 9=3 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

\&
Option (A) is correct.
Applying KVL in the circuit

$$
\begin{aligned}
V_{a b}-2 i+5 & =0 \\
V_{a b} & =2 \# 1-5=-3 \quad \text { Volt }
\end{aligned}
$$

$i=1 \mathrm{~A}$,

Option (C) is correct.
Charge stored at $t=5 \mathrm{~m} \mathrm{sec}$

$$
Q=\#_{0}^{5} i(t) d t=\text { area under the curve }
$$

$$
\begin{aligned}
Q & =\operatorname{Area} \mathrm{OABCDO} \\
& =\operatorname{Area}(\mathrm{OAD})+\operatorname{Area}(\mathrm{AEB})+\operatorname{Area}(\mathrm{EBCD}) \\
& =\underline{1} 2 \# 2 \# 4+\frac{1}{2} \# 2 \# 3+3 \# 2 \\
& =4+3+6=13 \mathrm{nC}
\end{aligned}
$$

Option (D) is correct.
Initial voltage across capacitor

$$
V_{0}=\frac{Q_{o}}{C}=\frac{13 \mathrm{nC}}{0.3 \mathrm{nF}}=43.33 \mathrm{Volt}
$$

When capacitor is connected across an inductor it will give sinusoidal esponse as v_{c}

$$
(t)=V_{o} \cos \mathrm{w}_{o} t
$$

where

$$
\begin{aligned}
\mathrm{w}_{o} & =\frac{1}{\sqrt{L C}}=\frac{1}{0.3 \# 10^{-9} \# 0.6 \# 10^{-3}} \\
& =2.35 \# 10^{6} \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

At $t=1 \mathrm{~m} \mathrm{sec}$,

$$
\begin{aligned}
v_{c}(t) & =43.33 \cos \left(2.35 \# 10^{6} \# 1 \# 10^{-6}\right) \\
& =43.33 \#(-0.70)=-30.44 \mathrm{~V}
\end{aligned}
$$

Option (B) is correct.
Writing node equations at node A and B

$$
\begin{aligned}
\frac{V_{a}-5}{1}+\frac{V_{a}-0}{1} & =0 \\
2 V_{a}-5 & =0 \\
V_{a} & =2.5 \mathrm{~V}
\end{aligned}
$$

Similarly
Current

$$
\begin{aligned}
\frac{V_{b}-4 V_{a b}}{3}++\frac{V_{b}-0}{1} & =0 \\
\frac{V_{b}-4\left(V_{a}-V_{b}\right)}{3}+V_{b} & =0 \\
V_{b}-4\left(2.5-V_{b}\right)+3 V_{b} & =0 \\
8 V_{b}-10 & =0 \\
V_{b} & =1.25 \mathrm{~V} \\
i & =\frac{V_{b}}{1}=1.25 \mathrm{~A}
\end{aligned}
$$

Option () is correct.

Here two capacitance C_{1} and C_{2} are connected in series, so equivalent capacitance is

$$
\begin{aligned}
C_{1} & =\frac{\mathrm{e}_{0} \mathrm{e}_{\mathrm{r} 1} A}{d_{1}}=\frac{8.85 \# 10^{-12} \# 8 \# 500 \# 500 \# 10^{-6}}{4 \# 10^{-9}} \\
& =442.5 \# 10^{-11} \mathrm{~F} \\
C_{2} & =\frac{\mathrm{e}_{0} \mathrm{e}_{12} A}{d_{2}}=\frac{8.85 \# 10^{-12} \# 2 \# 500 \# 500 \# 10^{-6}}{2 \# 10^{-9}} \\
& =221.25 \# 10^{-11} \mathrm{~F} \\
C_{e q} & =\frac{442.5 \# 10^{-11} \# 221.25 \# 10^{-11}}{442.5 \# 10^{-11}+221.25 \# 10^{-11}}=147.6 \# 10^{-11} \\
& -1476 \mathrm{pF}
\end{aligned}
$$

Option (B) is correct.
Circumference

$$
\begin{aligned}
& l=300 \mathrm{~mm} \\
& n=300
\end{aligned}
$$

no. of turns
Cross sectional area

$$
\begin{aligned}
A & =300 \mathrm{~mm}^{2} \\
L & =\frac{\mathrm{m}_{0} \mathrm{n}^{2} A}{l}=\frac{4 \mathrm{p} \mathrm{\#} 10^{-7} \#(300)^{2} \# 300 \# 10^{-6}}{\left(300 \# 10^{-3}\right)} \\
& =113.04 \mathrm{mH}
\end{aligned}
$$

Inductance of coil

Option (A) is correct.
Divergence of a vector field is given as
Divergence $=4: V$
In cartesian coordinates

$$
\begin{aligned}
& 4=2_{2 x}^{2} x^{\mathrm{t}}+2^{2} y_{@}^{\mathrm{t}}{ }_{@}^{j+22_{2}^{2}} z_{6}^{k}{ }^{\mathrm{t}} \\
& \text { 4: } V=\stackrel{2 x}{2}^{6}-(x \cos x y+y)+\underline{2}^{{ }^{6}}(y \cos x y)+{ }^{\text {@ }}{ }^{6}\left(\sin z^{2}+x^{2}+y^{2}\right) \\
& =-x(-\sin x y) y+y(-\sin x y) x+2 z \cos z^{2}=2 z \cos z^{2}
\end{aligned}
$$

Option (A) is correct.
Writing KVL for both the loops

$$
\begin{align*}
V-3\left(I_{1}+I_{2}\right)-V_{x}-0.5 \frac{d I_{1}}{d t} & =0 \\
V-3 I_{1}-3 I_{2}-V_{x}-0.5 \frac{d I_{1}}{d t} & =0 \tag{1}
\end{align*}
$$

In second loop

$$
-5 I_{2}+0.2 V_{x}+0.5 \frac{d I_{1}}{d t}=0
$$

$$
\begin{equation*}
I_{2}=0.04 V_{x}+0.1 \frac{d I_{1}}{d t} \tag{2}
\end{equation*}
$$

Put I_{2} from eq(2) into eq(2)

$$
\begin{aligned}
& V-3 I-3: 0.04 V+0.1^{\frac{d I_{1}}{}} \mathrm{D}-V-0.5^{\underline{d I_{1}}=0} d t \quad d t \\
& \quad \underline{x} \frac{d I}{} d t^{1}=-1.4 V_{x}-3.75 I_{1}+\underline{5}_{4} V
\end{aligned}
$$

Option (A) is correct.
Impedance of the given network is

$$
\begin{aligned}
& Z=R+j \mathrm{~b} \mathrm{w} L-\frac{1}{\mathrm{w} C} \\
& \text { Admittance } Y=\frac{1}{2}= \\
& \frac{1}{\underline{1}}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{j \mathrm{bw} L-\frac{1}{\mathrm{w} C} \underline{1}^{2}}{} \\
& R+\mathrm{b} \mathrm{w} L-\mathrm{w} C \mathrm{I} \quad R+\mathrm{b} \mathrm{w} L-\mathrm{w} C \text { । } \\
& =\operatorname{Re}(Y)+\operatorname{Im}(Y)
\end{aligned}
$$

Varying frequency for $\operatorname{Re}(Y)$ and $\operatorname{Im}(Y)$ we can obtain the admittance-locus.

Option (D) is correct.
At $t=0^{+}$, when switch positions are changed inductor current and capacitor voltage does not change simultaneously

$$
\text { So at } t=0^{+} \quad \begin{aligned}
& v_{c}\left(0^{+}\right)=v_{c}\left(0^{-}\right)=10 \mathrm{~V} \\
& i_{L}\left(0^{+}\right)=i_{L}\left(0^{-}\right)=10 \mathrm{~A}
\end{aligned}
$$

The equivalent circuit is

Applying KCL

$$
\begin{gathered}
\frac{v_{L}\left(0^{+}\right)}{10}+\frac{v_{L}\left(0^{+}\right)-v_{c}\left(0^{+}\right)}{10}=i_{L}(0)=10 \\
2 v_{L}\left(0^{+}\right)-10=100
\end{gathered}
$$

Voltage across inductor at $t=0^{+}$

$$
v_{L}\left(0^{+}\right)=\frac{100+10}{2}=55 \mathrm{~V}
$$

So, current in capacitor at $t=0^{+}$

$$
i_{C}(\stackrel{+}{0})=\frac{v_{L}\left(0^{+}\right)-v_{c}\left(0^{+}\right)}{10}=\frac{55-10}{10}=4.5 \mathrm{~A}
$$

Option (A) is correct.
The circuit is

Applying KVL

$$
\begin{aligned}
3-2 \# I_{N L}{ }^{2} & =V_{N L} \\
3-2 I_{N L}{ }^{2} & =I_{N L}{ }^{2} \\
3 I_{N L}{ }^{2} & =3 \& I_{N L}=1 \mathrm{~A} \\
V_{N L} & =(1)^{2}=1 \mathrm{~V}
\end{aligned}
$$

Option (B) is correct. In the circuit

$$
V_{X}=V+0 c
$$

$$
\frac{V_{y}-2 V+0 c}{R}+\left(V_{y}\right) j w C=0
$$

$$
V_{y}(1+j w C R)=2 V+0 c
$$

$$
V_{y}=\frac{2 V+0 \mathrm{c}}{1+j \mathrm{wCR}}
$$

$$
V_{Y X}=V_{X}-V_{Y}=V-\quad \frac{2 V}{1+j \mathrm{w} C R}
$$

$$
V_{Y X}=V-2 V=-V
$$

R" 3,

$$
V_{Y X}=V-0=V
$$

So power dissipated in the non-linear resistance

$$
P=V_{N L} I_{N L}=1 \# 1=1 \mathrm{~W}
$$

Option (A) is correct.
Assume a Gaussian surface inside the sphere $(x<R)$

From gauss law

$$
\begin{aligned}
y & =Q_{\text {enclosed }} \\
& =0 \# D: d s=Q_{\text {enclosed }} \\
Q_{\text {enclosed }} & =\frac{Q}{\frac{4}{3} \mathrm{p} R^{3}} \frac{4}{3} \mathrm{p} r^{3}=\frac{Q r^{3}}{R^{3}} \\
\# D: d s & =\frac{Q r^{3}}{R^{3}} \\
D \# 4 \mathrm{p} r^{2} & =\frac{Q r^{3}}{R^{3}}=\frac{Q}{4 \mathrm{pe}} \frac{r}{R^{3}}
\end{aligned}
$$

So,
or

$$
\text { a } D=\mathrm{e}_{0} E
$$

Option (D) is correct.
Inductance is given as

$$
\begin{array}{rlr}
L & =\frac{\mathrm{m}_{0} N^{2} A=\frac{4 \mathrm{p} \# 10^{-7} \#(400)^{2} \#\left(16 \# 10^{-4}\right)}{l}}{\left(1 \# 10^{-3}\right)}=321.6 \mathrm{mH} \\
V & =I X_{L}=\frac{230}{2 \mathrm{p} f L} & X_{L}=2 \mathrm{p} f L \\
& =\frac{230}{2 \# 3.14 \# 50 \# 321.6 \# 10^{-3}}=2.28 \mathrm{~A} &
\end{array}
$$

Option (A) is correct.

Energy stored is inductor

$$
\begin{gathered}
E=\stackrel{1}{2}_{2} L l^{2}=\underline{1}_{2} \# 321.6 \# 10^{-3} \#(2.28)^{2} \\
F=\frac{E}{l}=\frac{0.835}{1 \# 10^{-3}}=835 \mathrm{~N}
\end{gathered}
$$

Option (A) is correct. In the given circuit

Thevenin impedance:

$$
Z_{t h}=R+Z_{L}+Z_{C}=1+2 j-j=(1+j) \mathrm{W}
$$

Output voltage

$$
v_{o}=A v_{i}=10^{6} \# 1 \mathrm{mV}=1 \mathrm{~V}
$$

Input impedance

$$
Z_{i}=\frac{v_{i}}{i_{i}}=\frac{v_{i}}{0}=3
$$

Output impedance

$$
Z_{o}=\frac{v_{o}}{i_{o}}=\frac{A v_{i}}{i_{o}}=R_{o}=10 \mathrm{~W}
$$

Option (D) is correct.
All sources present in the circuit are DC sources, so all inductors behaves as short circuit and all capacitors as open circuit
Equivalent circuit is

Voltage across R_{3} is

$$
\begin{aligned}
& 5=I_{1} R_{3} \\
& 5=I_{1}(1) \\
& I_{1}=5 \mathrm{~A}
\end{aligned}
$$

(current through R_{3})
By applying KCL, current through voltage source

$$
\begin{aligned}
1+I_{2} & =I_{1} \\
I_{2} & =5-1=4 \mathrm{~A}
\end{aligned}
$$

Option () is correct.
Given Two port network can be described in terms of h-parametrs only.
Option (A) is correct.
At resonance reactance of the circuit would be zero and voltage across inductor and capacitor would be equal

$$
V_{L}=V_{C}
$$

At resonance impedance of the circuit
Current

$$
\begin{aligned}
Z_{R} & =R_{1}+R_{2} \\
I_{R} & =\frac{V_{1}+0 \mathrm{c}}{R_{1}+R_{2}} \\
V_{2} & =I_{R} R_{2}+j\left(V_{L}-V_{C}\right) \\
V_{2} & =\frac{V_{1}+0 \mathrm{c}}{R_{1}+R_{2}} R_{2}
\end{aligned}
$$

Voltage across capacitor

$$
V_{C}=\frac{1}{j \mathrm{~W} C} \# I_{R}=\frac{1}{j \mathrm{~W} C} \# \frac{V_{R}+0 \mathrm{c}}{R_{1}+R_{2}} \underset{\mathrm{w} C\left(R_{1}+R_{2}\right)}{=}
$$

So phasor diagram is

Option (B) is correct.
This is a second order LC circuit shown below

Capacitor current is given as

$$
i_{C}(t)=C^{\frac{d v}{} d t^{(t)}}
$$

Taking Laplace transform

$$
I_{C}(s)=C s V(s)-V(0), V(0) " \text { initial voltage }
$$

Current in inductor

$$
\begin{aligned}
& i_{L}(t)=\frac{1}{L} \# v_{c}(t) d t \\
& I_{L}(s)=\frac{1}{L} \frac{V(s)}{s}
\end{aligned}
$$

For $t>0$, applying KCL(in s-domain)

$$
\begin{gathered}
I_{C}(s)+I_{L}(s)=0 \\
C s V(s)-V(0)+\frac{1}{L} \frac{V(s)}{s}=0 \\
: s^{2}+\frac{1}{L C s} \mathrm{D} V(s)=V_{o}
\end{gathered}
$$

$$
V(s)=V_{o} \frac{s}{s^{2}+\mathrm{w}_{0}^{2}}, \quad \quad \mathrm{a}_{0}^{2}=\frac{1}{L C}
$$

Taking inverse Laplace transformation

$$
v(t)=V_{o} \cos \mathrm{~W}_{o} t, \quad t>0
$$

Option (D) is correct.
From maxwell's first equation

$$
\begin{aligned}
& 4: D=r_{v} \\
& 4: E=\frac{r_{v}}{e}
\end{aligned}
$$

Maxwell's fourth equation

$$
4: B=0
$$

Option (C) is correct. Current in the circuit

Or

$$
\begin{aligned}
I & \frac{100}{R+(10 \| 10)}=8 \mathrm{~A} \\
\frac{100}{R+5} & =8
\end{aligned}
$$

$$
R=\frac{60}{8}=7.5 \mathrm{~W}
$$

Sol. $70 \quad$ Option (A) is correct.
Rms value is given as

$$
m_{r m s}=\sqrt{3^{2}+\frac{(4)^{2}}{2}}=\sqrt{9+8}=\sqrt{17} \mathrm{~V}
$$

Sol. $71 \quad$ Option (D) is correct.
Writing KVL in input and output loops

$$
\begin{align*}
V_{1}-\left(i_{1}+i_{2}\right) Z_{1} & =0 \\
V_{1} & =Z_{1} i_{1}+Z_{1} i_{2} \tag{1}
\end{align*}
$$

Similarly

$$
\begin{align*}
& V_{2}-i_{2} Z_{2}-\left(i_{1}+i_{2}\right) Z_{1}=0 \\
& \quad V_{2}=Z_{1} i_{1}+\left(Z_{1}+Z_{2}\right) i_{2} \tag{2}
\end{align*}
$$

From equation (1) and (2) Z-matrix is given as

$$
L=, \begin{array}{cc}
Z_{1} & Z_{1} \\
Z_{1} & Z_{1}+Z_{2}
\end{array}{ }^{n}
$$

Option (B) is correct.
In final steady state the capacitor will be completely charged and behaves as an open circuit

Steady state voltage across capacitor

$$
v_{c}(3)=\frac{20}{10+10}(10)=10 \mathrm{~V}
$$

Option (D) is correct.
We know that divergence of the curl of any vector field is zero

$$
4(4 \overrightarrow{\#} \mathbf{E})=0
$$

Option (A) is correct.
When the switch is at position 1, current in inductor is given as

$$
i_{L}(0)=\frac{120}{20+40}=2 \mathrm{~A}
$$

At $t=0$, when switch is moved to position 1 , inductor current does not change simultaneously so

$$
i_{L}\left(0^{+}\right)=i_{L}\left(0^{-}\right)=2 \mathrm{~A}
$$

Voltage across inductor at $t=0^{+}$

$$
v_{L}\left(0^{+}\right)=120 \mathrm{~V}
$$

By applying KVL in loop

$$
\begin{aligned}
120 & =2(40+R+20) \\
120 & =120+R \\
R & =0 \mathrm{~W}
\end{aligned}
$$

Option (C) is correct.
Let stored energy and dissipated energy are E_{1} and E_{2} respectively. Then Current

$$
\begin{aligned}
& \frac{i_{2}^{2}}{i_{1}^{2}}=\frac{E_{2}}{E_{1}}=0.95 \\
& i_{2}=0.95 i_{1}=0.97 i_{1}
\end{aligned}
$$

Current at any time t, when the switch is in position (2) is given by

$$
i(t)=i_{1} e^{-\frac{R}{L} t}=2 e^{-\frac{60}{10 t}}=2 e^{-6 t}
$$

After 95% of energy dissipated current remaining in the circuit is

$$
i=2-2 \# 0.97=0.05 \mathrm{~A}
$$

So,

$$
\begin{gathered}
0.05=2 e^{-6 t} \\
t .0 .50 \mathrm{sec}
\end{gathered}
$$

Option (C) is correct.
At $f_{1}=100 \mathrm{~Hz}$, voltage drop across R and L is $m_{\text {RMS }}$

$$
\begin{aligned}
\mathrm{m}_{\mathrm{RMS}} & =\left|\frac{V_{i n} \cdot R}{R+j \mathrm{w}_{1} L}\right|=\left|\frac{V_{i n}\left(j \mathrm{w}_{1} L\right)}{R+j \mathrm{w}_{1} L}\right| \\
R & =\mathrm{w}_{1} L
\end{aligned}
$$

So,
At $f_{2}=50 \mathrm{~Hz}$, voltage drop across R

$$
\begin{aligned}
& 1 \\
& m_{\text {RMS }}=\left|\frac{V_{i n} \cdot R}{R+j w_{2} L}\right| \\
& \frac{m_{\text {RMS }}}{1}=\left|\frac{R+j \mathbf{w}_{2} L}{R+j \mathbf{w}_{1} L}\right|=\sqrt{\frac{R^{2}+\mathbf{w}_{2}{ }^{2} L^{2}}{{ }^{2}{ }^{2} w_{2}}{ }^{22}}
\end{aligned}
$$

$$
=\sqrt{\frac{\mathrm{w}_{1}^{2} L^{2}+\mathrm{w}_{2}^{2} L^{2}}{\mathrm{w}_{1} L+\mathrm{w}_{1} L}}, R=\mathrm{w}_{1} L
$$

$$
=\sqrt{\frac{w_{1}^{2}+w_{2}^{2}}{2 w_{1}^{2}}}=\sqrt{\frac{f_{1}^{2}+f_{2}^{2}}{2 f_{1}^{2}}}=\sqrt{\frac{(100)^{2}+(50)^{2}}{2(100)^{2}}}=\sqrt{\frac{5}{8}}
$$

$$
\text { I } \sqrt{\underline{8}}
$$

$$
\mathrm{m}_{\mathrm{RMS}}=5 \mathrm{~m}_{\mathrm{RMS}}
$$

Option (A) is correct.
In the circuit

$$
\begin{aligned}
\bar{I}_{B} & =I_{R}+0 \mathrm{c}+I_{y}+120 \mathrm{c} \\
2_{B} & { }^{2}{ }^{2} \\
I_{B} & \left.=I_{R}+I_{y}+2 I_{R} I_{y} \operatorname{cosb} \frac{120 \mathrm{c}}{2} \right\rvert\,=I_{R}+I_{y}^{22}+I_{R} I_{y} \\
I_{R} & =I_{y} \\
I_{B}^{2} & =I_{R}{ }^{2}+I_{R}{ }^{2}+I_{R}^{2}=3 I_{R}^{2} \\
I_{B} & =\sqrt{3} I_{R}=\sqrt{3} I_{y} \\
I_{R}: I_{y}: I_{B} & =1: 1: \sqrt{3}
\end{aligned}
$$

Since
so,

Option (C) is correct.
Switch was opened before $t=0$, so current in inductor for $t<0$

$$
i_{L}(0)=\frac{10}{10}=1 \mathrm{~A}
$$

Inductor current does not change simultaneously so at $t=0$ when switch is closed current remains same

$$
i_{L}\left(0^{+}\right)=i_{L}\left(0^{-}\right)=1 \mathrm{~A}
$$

Option (A) is correct.
Electric field inside a conductor (metal) is zero. In dielectric charge distribution os constant so electric field remains constant from x_{1} to x_{2}. In semiconductor electric field varies linearly with charge density.
Option (A) is correct.
Thevenin voltage:

Nodal analysis at P

$$
\frac{V_{t h}-4}{10} \frac{+{ }_{+} V_{t h}}{10}=0
$$

$$
V_{t h}=2 \mathrm{~V}
$$

Thevenin resistance:

Sol. 81 Option (D) is correct.
Resonance will occur only when Z is capacitive, in parallel resonance condition, suseptance of circuit should be zero.

$$
\begin{aligned}
\frac{1}{j \mathrm{w} L}+j \mathrm{w} C & =0 \\
1-\mathrm{w}^{2} L C & =0 \\
\mathrm{w} & =\frac{1}{\sqrt{ } L C} \quad \text { (resonant frequency) } \\
C & =\frac{1}{\mathrm{w}^{2} L}=\frac{1}{4 \# \mathrm{p} \#(500)^{2} \# 2}=0.05 \mathrm{mF}
\end{aligned}
$$

Option (A) is correct.
Delta to star ($\mathrm{T}-Y$) conversions is given as
Option (D) is correct.
Here two capacitor C_{1} and C_{2} are connected in series so equivalent Capacitance is

Similarly

$$
\begin{aligned}
C_{e q} & =\frac{C_{1} C_{2}}{C_{1}+C_{2}} \\
C_{1} & =\frac{\mathrm{e}_{0} \mathrm{e}_{r 1} A}{d_{1}}=\frac{8.85 \# 10^{-12} \# 4\left(400 \# 10^{-3}\right)^{2}}{6 \# 10^{-3}} \\
& =\frac{8.85 \# 10^{-12} \# 4 \# 16 \# 10^{-2}}{6 \# 10^{-3}}=94.4 \# 10^{-11} \mathrm{~F}
\end{aligned}
$$

$$
C_{2}=\frac{\mathrm{e}_{0} \mathrm{e}_{12} A}{d_{2}}=\frac{8.85 \# 10^{-12} \# 2 \#\left(400 \# 10^{-3}\right)^{2}}{8 \# 10^{-3}}
$$

$$
=\frac{8.85 \# 10^{-12} \# 2 \# 16 \# 10^{-12}}{8 \# 10^{-3}}=35.4 \# 10^{-11} \mathrm{~F}
$$

Option (C) is correct.

$$
C_{e q}=\frac{94.4 \# 10^{-11} \# 35.4 \# 10^{-11}}{(94.4+35.4) \# 10^{-11}}=25.74 \# 10^{-11}-257 \mathrm{pF}
$$

$$
\begin{aligned}
& R_{1}=\frac{R_{b} R_{c}}{R_{a}+R_{b}+R_{c}}=\frac{10 \# 10}{20+10+10}=2.5 \mathrm{~W} \\
& R_{2}=\frac{R_{a} R_{c}}{R_{a}+R_{b}+R_{c}}=\frac{20 \# 10}{20+10+10}=5 \mathrm{~W} \\
& R_{3}=\frac{R_{a} R_{b}}{R_{a}+R_{b}+R_{c}}=\frac{20 \# 10}{20+10+10}=5 \mathrm{~W}
\end{aligned}
$$

Inductance of the Solenoid is given as

$$
L=\frac{\mathrm{m}_{0} N^{2} A}{l}
$$

Where

$$
\begin{aligned}
& A \text { " are of Solenoid } \\
& l " \text { length } \\
& L=4 \mathrm{p} \# 10^{-7} \#(3000)^{2} \# \cdot \mathrm{p}_{3}\left(30 \# 10^{-3}\right)^{2}=31.94 \# 10^{-3} \mathrm{H} \\
& \\
& -32 \mathrm{mH}
\end{aligned}
$$

Option (C) is correct.
In the circuit

Voltage

$$
\begin{aligned}
V_{A} & =(2+1) \# 6=18 \mathrm{Volt} \\
2 & =\frac{E-V_{A}}{6} \\
2 & =\frac{E-18}{6} \\
E & =12+18=30 \mathrm{~V}
\end{aligned}
$$

Option (D) is correct.

For parallel circuit

$$
I=\frac{E}{\overline{Z_{e q}}}=E Y_{e q}
$$

$Y_{e q}$ " Equivalent admittance of the circuit

$$
\begin{aligned}
Y_{e q} & =Y_{R}+Y_{L}+Y_{C}=(0.5+j 0)+(0-j 1.5)+(0+j 0.3) \\
& =0.5-j 1.2
\end{aligned}
$$

So, current

$$
I=10(0.5-j 1.2)=(5-j 12) \mathrm{A}
$$

Sol. 87 Option (B) is correct.
In the circuit

Voltage $\quad \begin{aligned} V_{A} & =\frac{100}{10+(10 \| R)} \#(10 \| R)=\frac{100}{f} \mathrm{f} \frac{10 R}{10+R \mid} \\ & =\frac{1000 R}{100+20 R}=\frac{50 R}{5+R}\end{aligned}$
Current in $R \mathrm{~W}$ resistor
or

$$
\begin{aligned}
2 & =\frac{V_{A}}{R} \\
2 & =\frac{50 R}{R(5+R)} \\
R & =20 \mathrm{~W}
\end{aligned}
$$

Sol. 88 Option (A) is correct.
Since capacitor initially has a charge of 10 coulomb, therefore

$$
\begin{aligned}
Q_{0} & =C v_{c}(0) \quad v_{c}(0) " \text { initial voltage across capacitor } \\
10 & =0.5 v_{c}(0) \\
v_{c}(0) & =\frac{10}{0.5}=20 \mathrm{~V}
\end{aligned}
$$

When switch S is closed, in steady state capacitor will be charged completely and capacitor voltage is

$$
v_{c}(3)=100 \mathrm{~V}
$$

At any time t transient response is

$$
\begin{aligned}
& v_{c}(t)=v_{c}(3)+\left[v_{c}(0)-v_{c}(3)\right] e_{R C}^{-t}- \\
& v_{c}(t)=100+(20-100) e^{-}+\frac{t}{2.5}=100-80 e^{-t}
\end{aligned}
$$

Current in the circuit

$$
\begin{aligned}
i(t) & =C \frac{d v_{c}}{d t}=C \frac{d}{d t}\left[100-80 e^{-t}\right] \\
& =C \# 80 e^{-t}=0.5 \quad \# 80 e^{-t}=40 e^{-t}
\end{aligned}
$$

At $t=1 \mathrm{sec}$,

$$
i(t)=40 e^{-1}=14.71 \mathrm{~A}
$$

Sol. 89 Option (D) is correct.
Total current in the wire

$$
I=10+20 \sin \mathrm{w} t
$$

$$
I_{r m s}=\sqrt{0^{2}+\frac{(20)^{2}}{2}}=\sqrt{100+200}=\sqrt{300}=17.32 \mathrm{~A}
$$

Sol. 90

$$
Y_{22}=\frac{0.9}{0.50}=1.8
$$

Where power

Option (C) is correct.
Energy absorbed by the inductor coil is given as

So,

$$
E_{L}=\#^{t} P d t
$$

$$
P=V I=I \mathrm{~b} \frac{d I}{L d t \mid}
$$

For0 \# t \# 4 sec

$$
E_{L}=\#^{t} L I \frac{d I}{\mathrm{~b}} \mathrm{I} d t
$$

$$
\begin{array}{rlrl}
E_{L} & =2 \#^{4} I \frac{d I}{\mathrm{~b} d t} d t \\
& =2 \#_{0}^{0} I(3) d t+2 \#_{2}^{4} & (0) d t & * \frac{\mathrm{a}^{d} d}{d t} \\
& =3,0 \# t \# 2, \\
& =6 \#^{2} I \cdot d t=6(\text { area under the curve } i(t)-t) & =0,2<t<4
\end{array}
$$

$$
=6 \#^{\frac{1}{2}} 2 \# 2 \# 6=36 \mathrm{~J}
$$

Energy absorbed by 1 W resistor is

Total energy absorbed in 4 sec

$$
E=E_{L}+E_{R}=36+96=132 \mathrm{~J}
$$

Option (B) is correct.
Applying KCL at center node

$$
\begin{aligned}
& =9 \#:{\stackrel{\frac{t}{3}}{\mathrm{D}_{0}}}^{\mathrm{B}_{2}}+36[t]_{2}^{4}=24+72=96 \mathrm{~J}
\end{aligned}
$$

$$
\begin{aligned}
& >{ }_{Y_{21} 1}^{Y_{11} Y_{12}} \mathrm{H}=>{ }_{Z_{21}}^{Z_{11} Z_{22}{ }^{-1}} \mathrm{H}
\end{aligned}
$$

$$
\begin{aligned}
i_{L} & =i_{C}+1+2 \\
i_{L} & =i_{C}+3 \\
i_{C} & =-C \quad \frac{d v_{C}}{d t}=-1 \quad \frac{d}{d t}[4 \sin 2 t] \\
& =-8 \cos 2 t \\
i_{L} & =-8 \cos 2 t+3 \quad \text { (current through inductor) } \\
v_{L} & =L \frac{d i_{L}}{d t}=2 \# \frac{d}{d t}[3-8 \cos 2 t]=32 \sin 2 t
\end{aligned}
$$

so
Voltage across inductor

Option (A) is correct.
Thevenin impedance can be obtain as following

Given that

$$
Z_{t h}=Z_{3}+\left(Z_{1} \| Z_{2}\right)
$$

So,

$$
\begin{aligned}
Z_{1} & =10+-60 \mathrm{c}=10 \mathrm{c} \frac{1-\sqrt{3} j}{2} \mathrm{~m}=5(1-3 j) \\
Z_{2} & =10+60 \mathrm{c}=10 \mathrm{c} \frac{1+\sqrt{3} j}{2} \mathrm{~m}=5(1+\sqrt{ } 3 j) \\
Z_{3} & =50+53.13 \mathrm{c}=50 \mathrm{~b} \frac{3+4 j}{5} \mathrm{I}=10(3+4 j) \\
Z_{\text {th }} & =10(3+4 j)+\frac{5(1-3 j) 5(1+3 \mathrm{j} j)}{5(1 \sqrt{3} j)+5(1+\sqrt{3} j)} \\
& =10(3+4 j)+\frac{25(1 \pm \underline{3})}{}=30+40 j+1010
\end{aligned}
$$

$$
=40+40 j
$$

$$
Z_{t h}=40, ~ 2+45 \mathrm{cW}
$$

Option (A) is correct.
Due to the first conductor carrying $+I$ current, magnetic field intensity at point P is

$$
\overrightarrow{\mathbf{H}_{1}}=2 \mathrm{p} d \overrightarrow{\mathbf{Y}} \text { (Direction is determined using right hand rule) }
$$

Similarly due to second conductor carrying $-I$ current, magnetic field intensity is $\mathbf{H}_{2}=$

$$
\overrightarrow{2 \mathrm{p}} \mathrm{I}_{\overline{d(-\mathbf{Y})}=2 \mathrm{p}}{ }^{I} \overrightarrow{\mathbf{Y}^{(}} \rightarrow
$$

Total magnetic field intensity at point P .

$$
\mathbf{H}=\mathbf{H}_{1}+\overrightarrow{\mathbf{H}}_{2}=2 \mathrm{p} d \mathbf{Y}+2 \mathrm{p} d \mathbf{Y}=\mathrm{p}^{I} d \mathbf{Y}
$$

Option () is correct.
Option (C) is correct.
Given that magnitudes of V_{L} and V_{C} are twice of V_{R}

$$
\left|V_{L}\right|=\left|V_{C}\right|=2 V_{R} \quad \text { (Circuit is at resonance) }
$$

Voltage across inductor

$$
V_{L}=i_{R} \# j w L
$$

Current i_{R} at resonance

$$
i_{R}=\frac{5+0^{\%}}{R}=\frac{5}{5}=1 \mathrm{~A}
$$

so,

$$
\begin{aligned}
& \left|V_{L}\right|=\mathrm{w} L=2 V_{R} \\
& \mathrm{w} L=2 \# 5 \\
& \# 50 \# L=10 \\
& L=\frac{10}{314}=31.8 \mathrm{mH}
\end{aligned}
$$

$$
V_{R}=5 \mathrm{~V} \text {, at resonance }
$$

At node Q

$$
\begin{aligned}
2+\frac{V_{P}-10}{2}+\frac{V_{P}}{8} & =0 \\
16+4 V_{P}-40+V_{P} & =0 \\
5 V_{P}-24 & =0 \\
V_{P} & =\frac{24}{5} \mathrm{Volt}
\end{aligned}
$$

Applying nodal analysis in the circuit
At node P

$$
\begin{aligned}
& 2=\frac{V_{Q}-10}{4}+\frac{V_{O}-0}{6} \\
& 24=3 V_{Q}-30+2 V_{Q} \\
& 5 V_{Q}-54=0 \\
& V_{Q}=\frac{54}{5} \mathrm{~V}
\end{aligned}
$$

Potential difference between P-Q

$$
V_{P Q}=V_{P}-V_{Q}=\frac{24}{5}-\frac{54}{5}=-6 \mathrm{~V}
$$

Option (D) is correct.
First obtain equivalent Thevenin circuit across load R_{L}

Thevenin voltage
$\frac{V_{t h}-110+0 c_{+}}{6+8 j} V_{t h}-90+0 \mathrm{c}, \quad=0$

$$
\begin{aligned}
2 V_{t h}-200+0 \mathrm{c} & =0 \\
V_{t h} & =100+0 \mathrm{c} \mathrm{~V}
\end{aligned}
$$

Thevenin impedance

$$
Z_{t h}=(6+8 j) \mathrm{W} \|(6+8 j) \mathrm{W}=(3+4 j) \mathrm{W}
$$

For maximum power transfer

$$
R_{L}=Z_{t h} \mid=, 3^{2}+4^{2}=5 \mathrm{~W}
$$

Power in load

$$
\begin{aligned}
& P=i_{\text {eff }}{ }^{2} R_{L} \\
& P=\left|\frac{100}{3+4 j+5}\right|^{2} \quad \# 5=\frac{(100)^{2}}{80} \# 5=625 \mathrm{Watt}
\end{aligned}
$$

Option (D) is correct.
Applying mesh analysis in the circuit

$I_{1}=10 \mathrm{~A}, \quad I_{2}=-5 \mathrm{~A}$
Current in 2 W resistor

$$
\begin{aligned}
& I_{2} \mathrm{~W}=I_{1}-\left(-I_{2}\right)=10-(-5)=15 \mathrm{~A} \\
& V_{A}=15 \# 2=30 \text { Volt }
\end{aligned}
$$

So, voltage
Now we can easily find out current in all branches as following

Current in resistor R is 5 A

$$
\begin{aligned}
& 5=\frac{100}{R}-40 \\
& R=\frac{60}{5}=12 \mathrm{~W}
\end{aligned}
$$

Option (B) is correct.
Before $t=0$, the switch was opened so current in inductor and voltage across capacitor for $t<0$ is zero
$v_{c}\left(0^{-}\right)=0, \quad i_{L}\left(0^{-}\right)=0$
at $t=0$, when the switch is closed, inductor current and capacitor voltage does not change simultaneously so
$v_{c}\left(0^{+}\right)=v_{c}\left(0^{-}\right)=0, \quad i_{L}\left(0^{+}\right)=i_{L}\left(0^{-}\right)=0$
At $t=0^{+}$the circuit is

Simplified circuit

Voltage across inductor (at $t=0^{+}$)

$$
v_{L}\left(0^{+}\right)=\frac{10}{3+2} \quad \# 2=4 \text { Volt }
$$

Sol. 101 Option (D) is correct.
Given that

$$
\begin{aligned}
E_{1} & =h_{11} I_{1}+h_{12} E_{2} \\
I_{2} & =h_{21} I_{1}+h_{22} E_{2}
\end{aligned}
$$

and

$$
h_{12}=\left.\frac{E_{1}}{E_{2}}\right|_{I_{1}=0(\text { open circuit })}
$$

At node A

$$
\begin{align*}
\frac{E_{A}-E_{1}}{2}+\frac{E_{A}-E_{2}}{2}+\frac{E_{A}}{4} & =0 \\
5 E_{A} & =2 E_{1}+2 E_{2} \tag{1}
\end{align*}
$$

Similarly

$$
\frac{E_{1}-E_{A}}{2}+\frac{E_{1}}{2}=0
$$

$$
\begin{equation*}
2 E_{1}=E_{A} \tag{2}
\end{equation*}
$$

From (1) and (2)

$$
\begin{gathered}
5\left(2 E_{1}\right)=2 E_{1}+2 E_{2} 4 \\
8 E_{1}=2 E_{2} \\
h_{12}=\frac{E_{1}}{=} \\
E_{2} 4
\end{gathered}
$$

Sol. 102

Sol. 103

Sol. 104

Option (B) is correct.

$$
\begin{aligned}
V_{P Q} & =V_{P}-V_{Q}=\frac{K Q}{\mathrm{OP}}-\frac{K Q}{\mathrm{OQ}} \\
& =\frac{9 \# \frac{10^{9}}{} \# \underline{1} \# 10^{-9}-9 \# 10^{9} \# \underline{1 \#} \frac{10^{-9}}{40 \# 10^{-3} 20 \# 10^{-3}}}{} \\
& =9 \# 10^{3}: \overline{40} 1 \frac{1}{-20} \mathrm{D}=-225 \text { Volt }
\end{aligned}
$$

Sol. 103 Option (D) is correct.
Energy stored in Capacitor is

$$
\begin{aligned}
& E=\frac{1}{2} 2 C V^{2} \\
& C=\frac{\mathrm{e}_{0} d^{A}}{}=\frac{8.85}{\#} \frac{10^{-12}}{0.1 \# 100} \# 10^{-3} \frac{10^{-6}}{}=8.85 \# 10^{-12} \mathrm{~F} \\
& E=\frac{1}{2} \# 8.85 \# 10^{-12} \#(100)^{2}=44.3 \mathrm{~nJ}
\end{aligned}
$$

Option (B) is correct.
The figure is as shown below

The Capacitor shown in Figure is made up of two capacitor C_{1} and C_{2} connected in series.

$$
C_{1}=\frac{\mathrm{e}_{0} \mathrm{e}_{r_{1}, 1} A}{}{ }_{, C_{2}=} \mathrm{e}_{0} \mathrm{e}_{t_{2}^{r}}{ }_{2} A
$$

Since C_{1} and C_{2} are in series charge on both capacitor is same.

$$
Q_{1}=Q_{2}
$$

$C_{1}(100-V)=C_{2} V($ Let V is the voltage of foil)

$$
\begin{gathered}
\mathrm{e}_{0} \mathrm{e}_{r_{1} 1} A_{(100-V)}^{\mathrm{e}_{0} \mathrm{e}_{t^{r}}{ }_{2}}{ }^{3} A(100-V)={ }^{4}{ }_{V} \\
\\
\end{gathered}
$$

0.5

$$
300=5 \mathrm{~V} \& V=60 \mathrm{Volt}
$$

